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Abstract
Motivation: Accurate contact predictions can be used for predicting the structure of proteins. Until recently
these methods were limited to very big protein families, decreasing their utility. However, progress in contact
prediction has made it possible to predict accurate contact maps for many small families. Here, we ask
the question if it is possible to model these families and importantly if we can identify the correct models.
Results: We do find that we can with an estimated 90% (99%) accuracy predict the structure of 445 (97)
Pfam families of unkown structure. Out of these 340 (73) have not been reported before in any large scale
study of ab-initio predictions, even the one using meta-genomics data indicating that the PconsC3 contact
predicion approach used here is complementary to just using more sequence data. We do also report
surprisingly many large Pfam families where the structures generated are unlikely to be correct indicating
that the properties of the “dark proteome”
Availability: Datasets as well as models of all the 445 Pfam families are available at c3.pcons.net. All
programs used here are freely available.
Contact: arne@bioinfo.se
Supplementary information: No supplementary data

1 Introduction
A few years ago maximum entropy methods revolutionized the accuracy
of contact predictions in proteins (Weigt et al., 2009; Burger and
van Nimwegen, 2010; Aurell, 2016). This enabled the prediction of
accurate protein models using no information from homologous protein
structures (Marks et al., 2011; Morcos et al., 2011). It has been shown that
accurate protein structures can be obtained for soluble proteins (Marks
et al., 2011), membrane proteins (Nugent and Jones, 2012; Hopf et al.,
2012; Hayat et al., 2015) and even disordered proteins (Toth-Petroczy
et al., 2016). These methods have also been used to predict interactions
between proteins (Weigt et al., 2009; Ovchinnikov et al., 2014; Hopf et al.,
2014).

Until recently such methods have been limited to very large protein
families (Kamisetty et al., 2013; Skwark et al., 2014). However, by
the inclusion of additional information and improved machine learning

methods it is now often possible to obtain accurate contact maps for
families as small as a few hundred effective sequences (Michel et al.,
2017; Jones et al., 2015; Wang et al., 2017).

Pfam contains today approximately 16,000 protein families that vary
in size between a few tens to hundreds of thousands effective sequences.
About half (46%) of these protein families contain no representative
structure, i.e. there is more than 7,500 protein families without a structure.
The families with structure are on average larger than the ones without,
median size 680 vs. 134 effective sequences, i.e. most of the families
without a structure are too small for maximum entropy contact prediction
but might be within reach for methods that combine these with advanced
machine learning.

Now, we ask the question how many of these roughly 7,500 protein
families without a structure can be modeled reliably by using state of
the art contact prediction methods. To the best of our knowledge the
largest effort to model protein families was performed by the Baker group
who modeled structures for 614 families by including a very large set
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PcombC

Fig. 1. PconsFold2 workflow. Given an input sequence four alignments are created using HHblits and Jackhmmer at two different E-value thresholds of 1 and 10
−4 . These alignments

are then used input to PconsC3 to generate four contact maps. The 2.5L (L=length of sequence) top ranked contacts are then used by CONFOLD to generate 50 models for each alignment,
resulting in 200 models for each query sequence. These models are then ranked by a model quality assessment program.

of sequences from meta-genomics (Ovchinnikov et al., 2017). However,
their approach for contact prediction was based on a maximum entropy
method (Antala et al., 2015) and not newer methodsusing deep learning.
Here, we propose amethod to expand this by thousands of families without
using meta-genomics sequences.

The PconsFold pipeline is described in Figure Fig. 1. Given an input
protein sequence PconsFold2 generates four alignments. These alignments
are then used by PconsC3 (Michel et al., 2017) to predict four different
contact maps. The 2.5L (L=length of sequence) top ranked contacts are
then used to fold the protein. In contrast to PconsFold (Michel et al., 2014)
we do use CONFOLD (Adhikari et al., 2015), i.e. the NMR protocol of
CNS (Brunger, 2007) and not ROSETTA (Leaver-Fay et al., 2011). This
makes the pipeline much faster but possibly slightly less accurate.

CONFOLD is then used to fold 50models for each of these four contact
maps. The final step in the pipeline is the model quality assessment. In
addition to earliermethodswehere introducePcombC representing a linear
combination of three separate assessment scores: Pcons, ProQ3D, and the
agreement between contacts in the model and the underlying predicted
contact map (PPV).

First, we show that many protein families can be modeled using our
most recent contact prediction method, PconsC3 (Michel et al., 2017) and
the CONFOLD CNS based pipeline. However, we do find that using this
analysis it is difficult to know if a given protein family is modeled correctly
or not. Therefore, we utilize our experience in model quality assessment
to examine if the accuracy can be improved. We do find that using the best
single model quality assessment protocol (ProQ3D (Uziela et al., 2017))
we can model about 235 Pfam families at a FPR of 10%.

2 Methods
2.1 Datasets
There are 16,295 protein domain families in Pfam 29.0. Out of these
7733 domains have a known structure with a HHsearch hit in PDB
with an E-value of less than 10−3 that covers at least 75% of it’s
representative sequence. The representative sequence of a Pfam domain
with known structure is set to be the protein sequence ranked first by
the HHsearch (Söding, 2005) run against the PDB database bundled with
HHsuite (Meier and Söding, 2015) (date: 2016-09-07)

The test dataset was generated from 626 Pfam domains that were
randomly selected from 6925 domains with known structure that are
longer than 50 residues. We used a subset of this dataset to optimize
parameters for the linear combination of model quality assessment scores
and folding (number of models to generate, and whether to use one or
multiple alignments).

From the remaining Pfam domains we further excluded all Pfam
domains that can be found in the pdbmap file from Pfam release 29.0. For
this dataset of 7537 Pfam domains with unknown structure, analogously
we defined the sequence highest ranked in the HHblits alignment against
uniref20 (date: 2016-02-26) to be the reference sequence of the family.
We refer to the length of a Pfam family by the length of its representative
sequence.

2.2 Alignments
The input to direct coupling analysis (DCA)-based contact prediction
methods are multiple sequence alignments. These alignments were
generated using both HHblits and Jackhmmer, each at E-value thresholds
of 1 and 10−4. HHblits was run against the uniprot20 database from
HHsuite (date: 2016-02-26). The parameter -all has been used and
-maxfilt and -realign_maxwere set to 999999 as in (Michel et al.,
2017). Jackhmmer searches were performed against Uniprot90 (Magrane
and Consortium, 2011) and were run for five iterations with both -E and
-incE set to the respective E-value cutoffs.

2.3 Contact prediction
To overcome the limit of DCA methods requiring large alignments,
PconsC3 combines the results of such methods with contacts predicted
by a machine-learning based method (Michel et al., 2017). It then uses a
similar pattern recognition aproach than PconsC2 to iteratively increase
the quality of the predicted contact map. PconsC3 was run as described
earlier (Michel et al., 2017), however we used all four alignments as inputs
predicting one contact map for each alignment. The searches were started
from the Pfam representative sequence, i.e. the Pfam alignments were
ignored. Contact map quality is measured in positive predictive value
(PPV) over the same number of top-ranked contacts that were used during
folding (2.5 · sequence length (L)). The average contact score refers to the
mean PconsC3 score of these contacts.
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Fig. 2. PconsFold2 model quality (TM-score) on the benchmark dataset of the top-ranked models against (a) effective sequences in the underlying alignment and (b) against the length of
the input sequence. Pearson correlation r is shown in the upper left corner, black lines represent moving averages with a window of 40. Colors indicate whether the model has been predicted
to be above (blue) or below (red) 0.5 TM-score.
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Fig. 3. ROC-like plot for different ways of evaluating and ranking the models in the
benchmark dataset. While the x-axis shows true positive rate on a logarithmic scale, the
y-axis shows the number of proteins with TM-score > 0.5. The horizontal line indicates
the best possible outcome, i.e. the number of families with TM-score> 0.5 when ranking
the models by TM-score score.

2.4 Model generation
Contacts predicted by PconsC3 are then applied as distance restraints
between the Cβ -atoms (Cα in the case of glycine) during protein structure
prediction. We use CONFOLD (Adhikari et al., 2015) for this task. When
folding a protein using CONFOLD a fixed number of contacts are used.
Here, contacts are sorted by their PconsC3 score and a threshold is set on
the number of top-ranked contacts to use. This threshold is based on the
length of the input sequence as an input to CONFOLD, which folds the
protein using CNS (Brunger, 2007). For each alignment we generated 50
models resulting in a total of 200 models per Pfam family.

2.5 PcombC
PcombC is a linear combination between the scores of these three
methods, similar to what we used in CASP4 (Wallner et al., 2003) and
CASP5 (Wallner and Elofsson, 2005a).

SPcombC = a · SPcons + b · SProQ3D + c · PPV

Coefficients a, b, and c have been determined using a grid-search
on a 10x10x10 grid with values ranging from 0 to 1 and a step size of
0.1, optimizing the area under the ROC-curve for determining whether a
model is correct or not (TM-score threshold of 0.5). This gridsearch has
been performed on the training dataset. Optimal weights are a = 0.5,
b = 0.2, and b = 0.9. In order for SPcombC to remain within the same
scale as the input scores, the coefficients have been normalized to:

SPcombC =
0.5

1.6
· SPcons +

0.2

1.6
· SProQ3D +

0.9

1.6
· PPV

PcombC has thus been optimized for discriminating between accurate
and inaccurate models. This has the advantage of being able to interpred
the predicted score in terms of absolute model quality, enabling statements
about the confidence of a predicted model being correct.

2.6 Evaluation
Model quality is measured in template modeling score (TM-score)
scores (Zhang and Skolnick, 2004). For the ROC-analysis we set a TM-
score threshold of 0.5 to distinguish between correct and incorrect models.
Area under the curve (AUC) has been calculated taking the best possible
ranking as reference.

2.7 Runtime
The running time of the folding step was measured on a single core of
an Intel Xeon E5-2690 v4 processor. For the test dataset it takes around
30 seconds on average to generate one model with a minimum of 2s per
model for the shortest family (32 residues) and 245s for the longest (524
residues).
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3 Results
3.1 Utilization of predicted contacts
Preliminary data indicated that using a threshold for the number of contacts
utilized during folding of 2.5 times the length of the sequence has been
optimal. Using this threshold, we investigated the effect of the number
of generated models on the quality of the best and top-ranked model,
Table 1. For this experiment models were ranked by their CNS-contact
score. The quality of top-ranked models does not increase as much as that
of the best possible models. However, there is a flattening after around 50
models. For the best possible models there is slight increase in average
performance against the default of 20 models from 0.43 to 0.45 TM-score.
We thus decided that generating 50 models for a given contact map is a
good tradeoff between the quality of the best possible model and running
time.

It has previously been observed that the quality of predicted contacts
depends on the underlying alignment (Skwark et al., 2013). This in turn
results in varying quality of the predicted models based on these contact
maps. We therefore investigated whether model quality can be improved
by using a set of alignments with varying methods and E-value thresholds
instead of a single fixed alignment. Table 1 further compares using either

200 models of an HHblits alignment with an E-value threshold of 1 or
when using four alignments with 50 models each (see Methods). The
average maximum TM-score improves by 6.5% when using four different
alignments and the average top-ranked TM-score by 5%.

Table 1. Best possible (max) and top-ranked average TM-scores on the training
dataset for varying number of models on a single alignment (HHblits E-value
1) and for 50 models on all four alignments each (4 x 50).

No. models TM-score (max) TM-score (top-ranked)
1 0.36 0.36
5 0.41 0.39
20 0.43 0.40
50 0.45 0.40
100 0.45 0.40
200 0.46 0.40

4 x 50 0.49 0.42
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Fig. 4. Model quality as measured by TM-score on the benchmark dataset of the top-ranked models against (a) PcombC score (scoring function of the PconsFold2 pipeline), (b) Pcons
score, (c) ProQ3D score, (d) and (d) CNS contact energy normalized by sequence length. Pearson correlations r and average TM-scores (<TM>) are shown, black lines represent moving
averages with a window of 40. For CNS-contact the pearson correlation has been calculated on log10(CNS-contact)
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Fig. 5. Pfam .

3.2 PcombC
In order to blindly score and rank that pool of 200 models as accurately
as possible, three different model quality assessment methods are run.
Pcons predicts a quality score for each model based on a comparison of
all models against each other (consensus method) (Wallner and Elofsson,
2005b). ProQ3D is a single model quality assessment method, that looks
at onemodel at a time and assesses its quality using deep learing on various
features of the given model (Uziela et al., 2017). The third score, PPV, is
the contact agreement between the model and the underlying contact map,
using the same number of top-ranked contacts as used during folding.

IT CAN BE SEEN THAT PCOMBC is better than XXX
PcombC is a linear combination between the scores of these three

methods, similar to what we used in CASP4 (Wallner et al., 2003) and
CASP5 (Wallner and Elofsson, 2005a). PcombC has thus been optimized
for discriminating between accurate and inaccurate models. This has the
advantage of being able to interpred the predicted score in terms of absolute
model quality, enabling statements about the confidence of a predicted
model being correct.

Table 2. ROC analysis when classifying whether a model is correct (TM-score
≥ 0.5) or not.

# models at FPR
Method 0.01 0.1 1.0
PcombC 68 (22%) 146 (48%) 217 (72%)
Pcons 9 (3%) 115 (38%) 215 (71%)
ProQ3D 42 (14%) 114 (38%) 211 (70%)
CNS-contact 46 (15%) 105 (35%) 214 (71%)
best possible 303 303 303

3.3 Model quality assessment
Figure 4 shows how the scores of different QA tools predict TM-score. As
before, for each family in the test set we ranked all models by each QA
score and selected the top ranked model. Pearson correlation (r) is highest
for PcombC, followed by Pcons and ProQ3D. PPV correlates equally well
with TM-score as CNS-contact does (data not shown)

In order to estimate model quality when there is no known structure
available it needs to be predicted as accurately as possible. The goal is not
only to select the best models from a set of predictions but also to predict
how much these models can be trusted. Figure 3 shows the false positive
rate (FPR) for different quality assessment (QA) tools when classifying
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predictions into correct (TM-score ≥ 0.5) or incorrect (TM-score ≤ 0.5)
models. For this analysis all models have first been assessed and ranked
by the respective QA tool. Then the top-ranked model has been selected
and classified whether it is correct or not.

Fig. 6.Models of some Pfam families. (a) and (b) front and top-view of PF10646, (c) and
(d) PF01925, (e) and (f) PF02653, and (g) and (h) PF02677

Although the overall number of correct top-ranked models does not
change much (number of true positives at FPR = 1.0), there are substantial
differences in the ability of the different scores to classify the models. As
Table 2 shows, the default ranking from CONFOLD (CNS-contact score)
normalized by length performs not very well in assessing the models,
although it ranks them comparatively well (total of 108 models above
0.5 TM-score). At an FPR of 0.1 (specificity of 90%) only 46 models are
picked up from the 149 correct models (dashed horizontal line in Figure 3).
In this scenario ProQ3D selects 58 and Pcons is able to select 64 models

correctly. By a margin the largest number of detected models has PcombC
with more than 51% of the total correct models at 0.1 FPR.

The results shown here indicate that a combination of QA methods
along with contact map agreement provides a significant improvement in
detecting correct models over the best single methods. It can be used to
reliably predictmodel accuracywhile at the same timebeingmore sensitive
than previous methods.

3.4 Overall performance
Figure 2(a) shows the performance of PconsFold2 in TM-score of the top-
ranked model against the family size, measured in effective sequences.
Generally, model accuracy depends on logarithmic family size with a
correlation of 0.54. The color indicates whether a protein was predicted
to be correct or not, i.e. if the PcombC score used to rank the models
in PconsFold2 was above or below the 0.1 FPR cutoff. In the region of
TM-score 0.5-0.6 the top ranked model for about half of the proteins is
corretly predicted to be accurate. Above TM-score 0.6 nearly all proteins
are correctly identified.

There are however 5 cases where PconsFold2 predicts the model to
be correct whereas the TM-score is below 0.4. All of these proteins are
relatively short with lengths ranging from 56 to 109 residues. Visual
inspection shows that they contain beta sheetswhere someof the strands are
swapped. Whether this causes the quality assessment tools to overestimate
its quality remains to be determined.

Fig. 2(a) further reveals that for families smaller than 100 effective
sequences, structure prediction has a success rate (percentage of models
that are correctly identified to be above 0.5 TM-score) of only 2%. As soon
as the family becomes larger than 100 effective sequences the number of
correct models increases rapidly. The success rate is 23% for families
between 100 and 1000 effective sequences and 53% for large families
with more than 1000 effective members.

PconsFold2 model quality seems largely independent of the length of
the input sequence as Fig 2(b) shows. The fraction of correctly identified
models decreases slightly towards longer proteins.

4 Discussion

Table 3. Number of Pfam families with unknown structure that can be modelled
at 1% and 10% FPR of which the overlap with the Baker studies are given by
number in parenthesis. TM-score columns show the average TM-score between
themodels of this study andOvchinnikov et al. (2017) for all overlappingmodels
at 0.1 and 0.01 FPR, respecively.

0.01 TM-score 0.1 TM-score
ProQ3D 36 (10) 0.53 235 (77) 0.53
PcombC 13 ( 8) 0.70 44 (23) 0.62
Pcons 2 ( 1) 0.69 44 (25) 0.61

CNS-contact 62 ( 13) 0.54 231 (37) 0.51
Union 97 ( 24) 0.52 445 (104) 0.50
All 6383 558 6383 558

We are currently running all evaluations. Unfortunately all estimates
of the PcombC results are not done at this deadline, therefore we can only
estimate the number of correctly modelled Pfam domains from the small
test-set. Using this estimate of the 8562 protein families in Pfam without a
known structure we estimate that we can model about 2000, see Table ??.
This corresponds to 25% of all Pfam families without a known structure.

Alternatively we can estimate the number of accurate models using
Pcons. A Pcons cutoff of 0.36 that should correspond to a FPR of 10%
(TM-score< 0.5. This corresponds to 388 pfam families out of 6754 for
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which we ran Pcons, see Figure 5. Out of the 388 families 124 are in
common with the recent study by Ovchinnikov et al. (2017), that leaves
264 novel families.

Figure 6 shows a few examples of the models top-ranked by
Pcons where Pcons predicts the model to be accurate. PF10646 is the
GerMN domain of the Bacillus GerM protein involved in sporulation
and spore germination. PF01925 represents a sulfite exporter TauE/SafE
transmembrane protein. PF02653 contains branched-chain amino acid
transport system proteins and PF02677 is still completely uncharacterized
and marked in Pfam as a domain of unknown function. Out of these
examples only PF10646 has been predicted in Ovchinnikov et al.
(2017). All predictions including their quality scores will be provided
on c3.pcons.net.

5 Conclusion
Here, we estimate that between 400 and 2000 Pfam families can be
modeled using contacts predicted from PconsC3 at a false positive rate of
10%. This is made possible by using a combination of improved contact
predictions in PconsC3 and accurate model quality assessment methods.
This number is obtained without the use of meta-genomic data, and might
increase significantly if such sequences were included. Our approach
provides a significant increase in the structural coverage available today.
By visual inspections the models appear feasible, see Figure 6.
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J. J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J. J., Kuhlman, B.,
Baker, D., and Bradley, P. (2011). ROSETTA3: an object-oriented software suite
for the simulation and design of macromolecules. Methods in enzymology, 487,
545–574.

Magrane, M. and Consortium, U. (2011). UniProt Knowledgebase: a hub of
integrated protein data. Database, 2011(0), bar009.

Marks, D. S., Colwell, L. J., Sheridan, R., Hopf, T. A., Pagnani, A., Zecchina, R.,
and Sander, C. (2011). Protein 3D structure computed from evolutionary sequence
variation. PloS one, 6(12), e28766.

Meier, A. and Söding, J. (2015). Automatic prediction of protein 3d structures
by probabilistic multi-template homology modeling. PLoS Comput Biol, 11(10),
e1004343.

Michel, M., Hayat, S., Skwark, M., Sander, C., Marks, D., and Elofsson, A. (2014).
Pconsfold: improved contact predictions improve protein models. Bioinformatics,
30(17), i482–8.

Michel, M., Skark, M. J., Menéndez-Hurtado, D., Ekeberg, M., and Elofsson, A.
(2017). Predicting accurate contacts in thousands of pfam domain families using
pconsc3. Submitted.

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D., Sander, C., Zecchina, R.,
Onuchic, J., Hwa, T., and Weigt, M. (2011). Direct-coupling analysis of residue
coevolution captures native contacts across many protein families. Proc Natl Acad
Sci U S A, 108(49), 1293–301.

Nugent, T. and Jones, D. T. (2012). Accurate de novo structure prediction of large
transmembrane protein domains using fragment-assembly and correlated mutation
analysis. Proceedings of the National Academy of Sciences of the United States of
America, 109(24), 1540–1547.

Ovchinnikov, S., Kamisetty, H., andBaker, D. (2014). Robust and accurate prediction
of residue-residue interactions across protein interfaces using evolutionary
information. Elife, 3, e02030.

Ovchinnikov, S., Park, H., Varghese, N., Huang, P.-S., Pavlopoulos, G. A., Kim,
D. E., Kamisetty, H., Kyrpides, N. C., and Baker, D. (2017). Protein structure
determination using metagenome sequence data. Science, 355(6322), 294–298.

Skwark, M. J., Abdel-Rehim, A., and Elofsson, A. (2013). PconsC: Combination
of direct information methods and alignments improves contact prediction.
Bioinformatics, 29(14), 1815–1816.

Table 4. Properties of Pfam families that can bemodelled accurately at FPR 0.1. Score is the average quality assessment score of the respectivemethod, PconsC3 score
the average score of the contacts used to fold the model; helix, sheet, and coil represent percentages of predicted secondary structural elements; transmembrane
denotes the fraction of predicted transmembrane proteins. The union combines the non-overlapping families that are predicted by the four quality assessment
methods. Statistical significant differences from a students t-test at P-values 0.01 and 10

−5 are marked with ∗ and ∗∗ respectively for all columns except the first.

score PconsC3 score helix sheet coil Meff L transmembrane
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Union 0.29 0.54∗∗ 0.29∗∗ 0.18* 0.53* 2203.32 103.65∗∗ 0.06∗∗

All – 0.42 0.36 0.15 0.5 1289.9 186.85 0.25
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