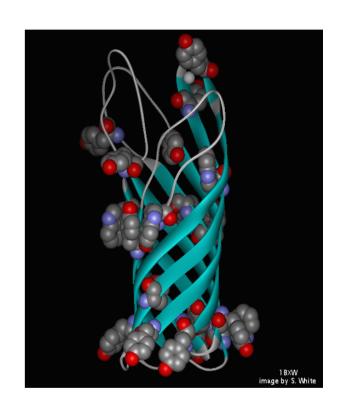
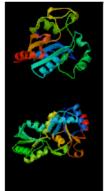


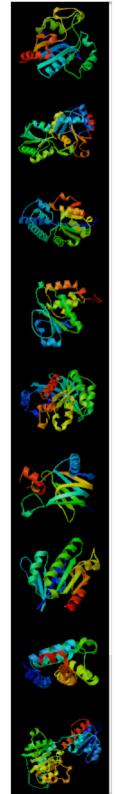
Protein Structure Prediction



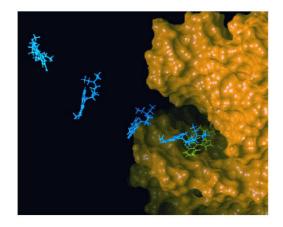


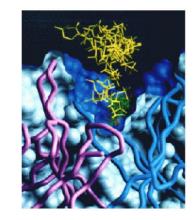
- Why ?
- Introduction to protein structure predictions
- Secondary structure prediction (Mount: 455-468)
 - Chou-Fasman
 - GOR-III method
 - PhD method
 - Nearest Neighbor methods
 - State of the art methods
- Molecular modelling intro

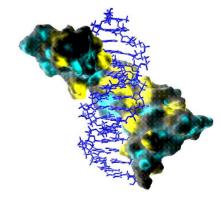
Why do we need structure prediction?



- active sites, binding sites, conformational changes...
- structure and function conserved more than sequence
- 3D structure determination is difficult, slow and expensive
- Intellectual challenge, Nobel prizes etc...
- Engineering new proteins




The Use of Structure

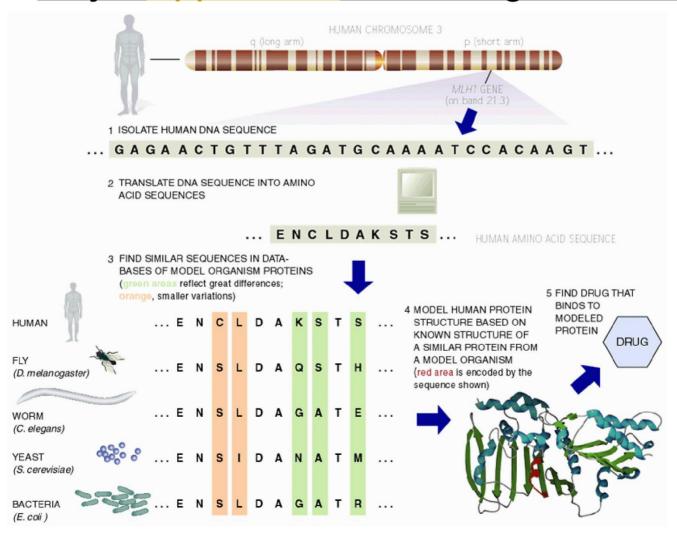

Major Application I: Designing Drugs

- Understanding How Structures Bind Other Molecules (Function)
- Designing Inhibitors
- Docking, Structure Modeling

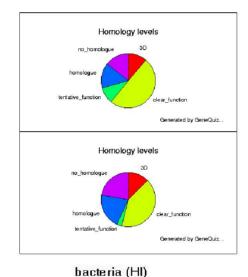
(From left to right, figures adapted from Olsen Group Docking Page at Scripps, Dyson NMR Group Web page at Scripps, and from Computational Chemistry Page at Cornell Theory Center).

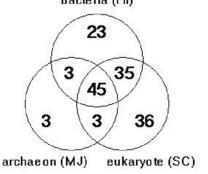
The Use of Structure





Major Application II: Finding Homologs

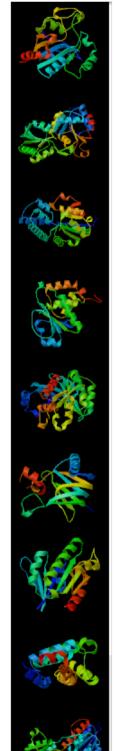


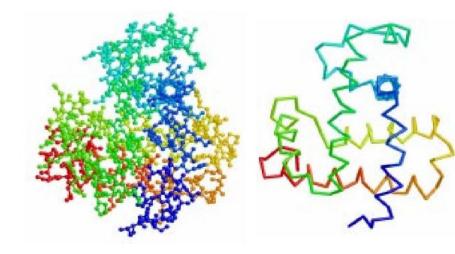

The Use of Structure

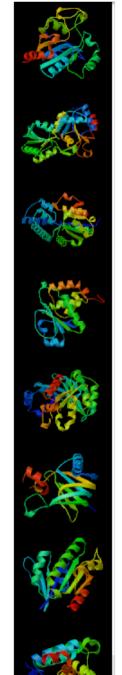
Major Application I|I: Overall Genome Characterization

- Overall Occurrence of a Certain Feature in the Genome
 - ♦ e.g. how many kinases in Yeast
- Compare Organisms and Tissues
 - ♦ Expression levels in Cancerous vs Normal Tissues
- Databases, Statistics

(Clock figures, yeast v. Synechocystis, adapted from GeneQuiz Web Page, Sander Group, EBI)





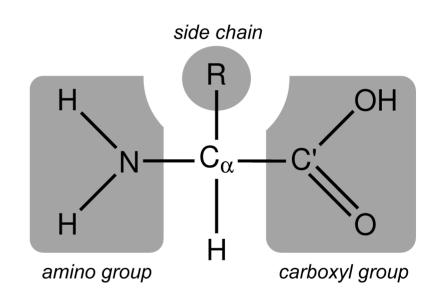

It's not that simple...

- Amino acid sequence contains all the information for 3D structure (experiments of Anfinsen, 1970's)
- But, there are thousands of atoms, rotatable bonds, solvent and other molecules to deal with...
- Levinthal's paradox

Sperm Whale Myoglobin

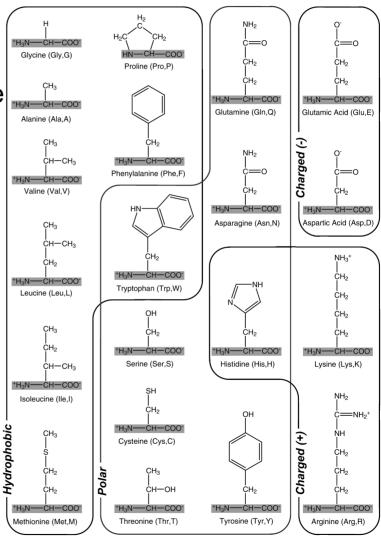
Remember...

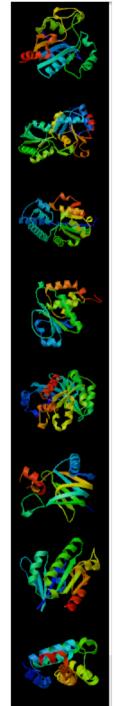
- All which we study is an abstraction to make comprehension of a complex entity more straightforward
- We think of structures as static entities, but they are dynamic, sometimes to the point of being ill-definable – function requires this flexibility
- The more we have the more we know



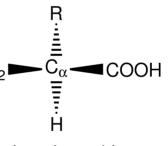
Primary Structure - Amino Acids

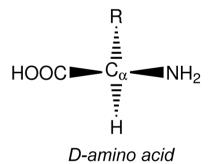
- It is the amino acid sequence that "exclusively" determines the 3D structure of a protein
- 20 amino acids modifications do occur post protein synthesis




Amino Acids Continued...

- It is the properties of the R group that determine the property of the aa and ultimately the protein
- Different schemes exist for describing the properties Willie Taylor's scheme is often employed in bioinformatics analyses
 - Hydrophobicity, polarity and charge are common measures
 - Learn the amino acid codes, structures and properties!



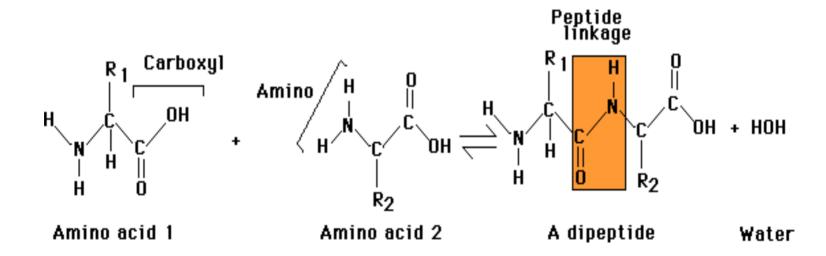


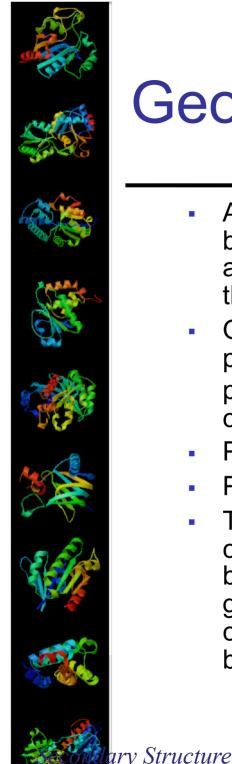
Amino Acids Continued...

- Chirality amino acids are enatiomorphs, that is mirror images exist – only the L(S) form is found in naturally forming proteins. Some enzymes can produce D(R) amino acids
- Think about a data structure for this information – annotation ar_{NH2} a validation procedure should t included
- Think about systematic versus common nomenclature

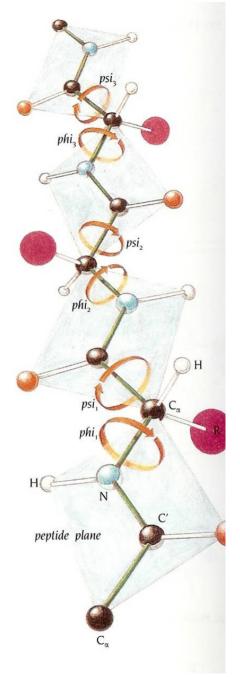
L-amino acid

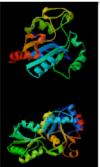
Structure



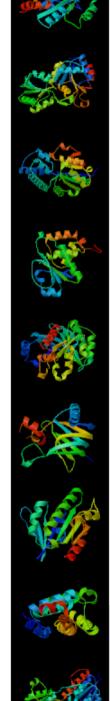

Peptide Bond Formation

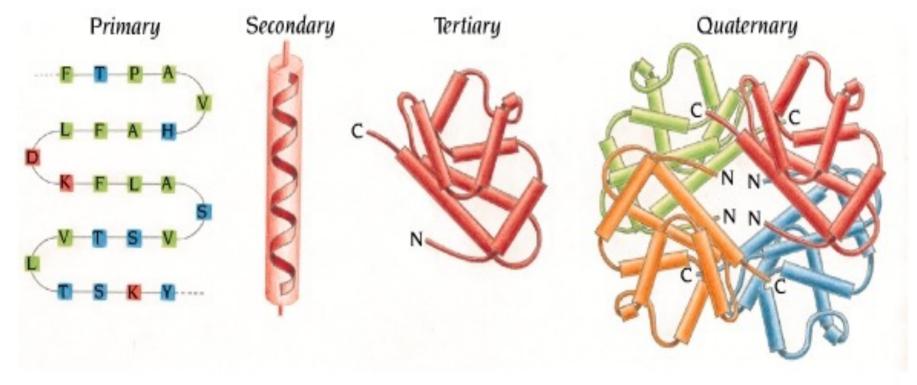
- Individual amino acids form a polypeptide chain
- Such a chain is a component of a hierarchy for describing macromolecular structure
- The chain has its own set of attributes
- The peptide linkage is planar and rigid





Geometry of the Chain

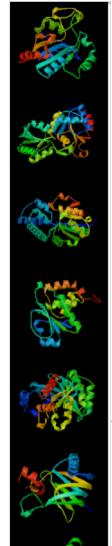

- A dihedral angle is the angle between two planes defined by 4 atoms – 123 make one plane 234 the other
- Omega is the rotation around the peptide bond C_n – N_{n+1} – it is planar and is 180 under ideal conditions
- Phi is the angle around N Calpha
- Psi is the angle around Calpha C'
- The values of phi and psi are constrained to certain values based on steric clashes of the R group. Thus these values show characteristic patterns as defined by the Ramachandran plot

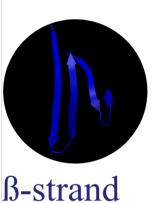



4 Basic Levels of Protein Structure

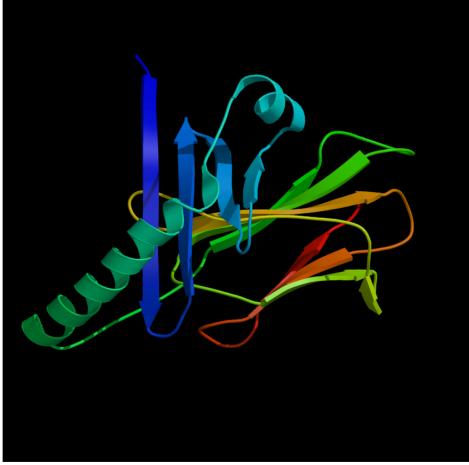
Summary of the four main approaches to structure prediction. Note that there are overlaps between nearly all categories.

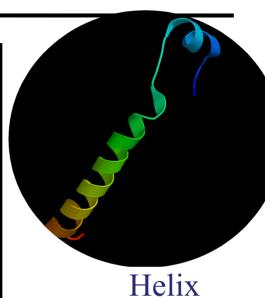
3	
a Chi	


Method	Knowledge	Approach	Difficulty	Usefulness
Comparative modelling (Homology modelling)	Proteins of known structure	Identify related structure with sequence methods, copy 3D coords and modify where necessary	Relatively	Very, if sequence identity drug design
Fold recognition	Proteins of known structure	Same as above, but use more sophisticated methods to find related structure	Medium	Limited due to poor models
Secondary structure prediction	Sequence- structure statistics	Forget 3D arrangement and predict where the helices/strands are	Medium	Can improve alignments, fold recognition, ab initio
ab initio tertiary structure prediction	Energy functions, statistics	Simulate folding, or generate lots of structures and try to pick the correct one	Very hard	X

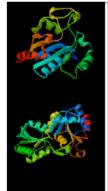

Secondary structure predictions

- Ignore 3D, it's too hard!
 - Usually concentrate on helix, strand and ``coil".
- Pattern recognition, but which patterns?
- some amino acids have preferences for helix or strand; due to geometry and hydrogen bonding
- spatial (along sequence) patterns, alternating hydrophobics (helical wheel)
- conservation (down alignment) in different members of protein family; insertions and deletions
- Three main generations/stages in SSP method development since 1970's.





Secondary Structure Elements

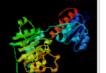


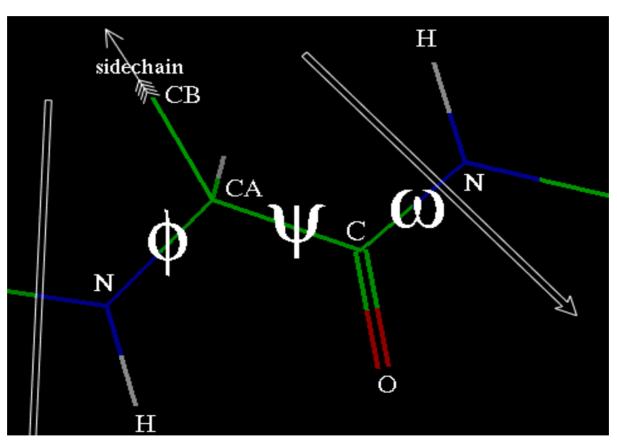
What is "known secondary structure"?

SSP methods

- visually by structural biologist
- by geometric and chemical criteria (, angles, distances between atoms, hydrogen bonds...) by programs like DSSP and STRIDE

Of critical importance in training/assessment of

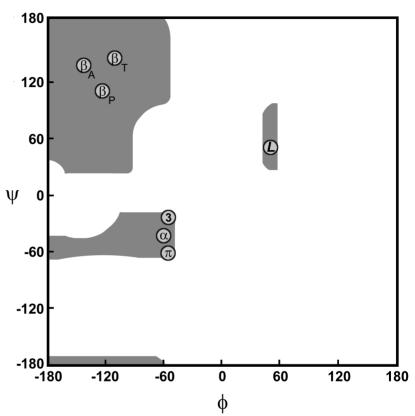




Dihedral Angles

From http://www.imb-jena.de

phi	-	dihedral angle about the N-Calpha	a bond	
psi	_	dihedral angle about the Calpha-G	bond	
omega	-	dihedral angle about the C-N (per	otide) b	ond




Ramachandran Plot

- Shows allowed and disallowed regions
- Gly and Pro are acceptions: Gly has no limitation; Pro is constrained by the factits side chain binds back to the main chain

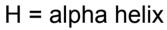
Gray = allowed conformations. β_A , antiparallel b sheet; β_P , parallel b sheet; β_T , twisted b sheet (parallel or anti-parallel); α , right-handed α helix; L, left-handed helix; β_T , helix; β_T , β_T

Automatic assignment programs

- DSSP (http://www.cmbi.kun.nl/gv/dssp/)
- STRIDÈ (http://www.hgmp.mrc.ac.uk/Régistered/Option/stride.html)

#	RES	SIDUE AA	STRU	CTURE	BP1	BP2	ACC	и-н>0	O>H-N	N-H>O	O>H-N	TCO	KAPPA ALPHA	PHI	PSI	X-CA	Y-CA	z-ca
	1	4 A E			0	0	205	0, 0.0	2,-0.3	0, 0.0	0, 0.0	0.000	360.0 360.0	360.0	113.5	5.7	42.2	25.1
	2	5 A H		_	0	0	127	2, 0.0	2,-0.4	21, 0.0	21, 0.0	-0.987	360.0-152.8	-149.1	154.0	9.4	41.3	24.7
	3	6 A V		_	0	0	66	-2,-0.3	21,-2.6	2, 0.0	2,-0.5	-0.995	4.6-170.2	-134.3	126.3	11.5	38.4	23.5
	4	7 A I	E	-A	23	0A	106	-2,-0.4	2,-0.4	19,-0.2	19,-0.2	-0.976	13.9-170.8	-114.8	126.6	15.0	37.6	24.5
	5	8 A I	E	-A	22	0A	74	17,-2.8	17,-2.8	-2,-0.5	2,-0.9	-0.972	20.8-158.4	-125.4	129.1	16.6	34.9	22.4
	6	9 A Q	E	-A	21	0A	. 86	-2,-0.4	2,-0.4	15,-0.2	15,-0.2	-0.910	29.5-170.4	-98.9	106.4	19.9	33.0	23.0
	7	10 A A	E	+A	20	0A	18	13,-2.5	13,-2.5	-2,-0.9	2,-0.3	-0.852	11.5 172.8	-108.1	141.7	20.7	31.8	19.5
	8	11 A E	E	+A	19	0A	63	-2,-0.4	2,-0.3	11,-0.2	11,-0.2	-0.933	4.4 175.4	-139.1	156.9	23.4	29.4	18.4
	9	12 A F	E	-A	18	0A	31	9,-1.5	9,-1.8	-2,-0.3	2,-0.4	-0.967	13.3-160.9	-160.6	151.3	24.4	27.6	15.3
	10	13 A Y	E	-A	17	0A	. 36	-2,-0.3	2,-0.4	7,-0.2	7,-0.2	-0.994	16.5-156.0	-136.8	132.1	27.2	25.3	14.1
	11	14 A L	E :	>> -A	16	0A	24	5,-3.2	4,-1.7	-2,-0.4	5,-1.3	-0.929	11.7-122.6	-120.0	133.5	28.0	24.8	10.4
	12	15 A N	T 4	45S+	0	0	54	-2,-0.4	-2, 0.0	2,-0.2	0, 0.0	-0.884	84.3 9.0	-113.8	150.9	29.7	22.0	8.6
	13	16 A P	T 4	45S+	0	0	114	0, 0.0	-1,-0.2	0, 0.0	-2, 0.0	-0.963	125.4 60.5	-86.5	8.5	32.0	21.6	6.8
	14	17 A D	T 4	45S-	0	0	66	2,-0.1	-2,-0.2	1,-0.1	3,-0.1	0.752	89.3-146.2	-64.6	-23.0	33.0	25.2	7.6
	15	18 A Q	T ·	<5 +	0	0	132	-4,-1.7	2,-0.3	1,-0.2	-3,-0.2	0.936	51.1 134.1	52.9	50.0	33.3	24.2	11.2
	16	19 A S	E	< +A	11	0A	44	-5,-1.3	-5,-3.2	2, 0.0	2,-0.3	-0.877	28.9 174.9	-124.8	156.8	32.1	27.7	12.3
	17	20 A G	E	-A	10	0A	. 28	-2,-0.3	2,-0.3	-7,-0.2	-7,-0.2	-0.893	15.9-146.5	-151.0	-178.9	29.6	28.7	14.8
	18	21 A E	E	-A	9	0A	. 14	-9,-1.8	-9,-1.5	-2,-0.3			5.0-169.6			28.0	31.5	16.7
	19	22 A F	E	+A	8	0A	. 3	12,-0.4	12,-2.3	-2,-0.3	2,-0.3	-0.982	27.8 149.2	-139.1	120.3	26.5	32.2	20.1
	20	23 A M	E	-AB	7	30A	. 0	-13,-2.5	-13,-2.5	-2,-0.4	2,-0.4	-0.983	39.7-127.8	-152.1	161.6	24.5	35.4	20.6
	21	24 A F	E	-AB	6	29A	45			-2,-0.3			23.9-164.1	-112.5	137.7	21.7	37.0	22.6
	22	25 A D		-AB							2,-0.5					18.9	38.9	20.8
	23	26 A F											78.4 -27.2			16.4	41.3	22.3
	24	27 A D			0		74						128.9 -46.6			13.4	42.1	20.2
	25	28 A G			0		20						. 118.8 109.3			15.4	41.4	17.0
	26	29 A D			23		114						71.8-114.7			18.4	43.4	18.1
	27	30 A E	E	-B	22	0A	. 8	-2,-0.4	-5,-0.3	-5,-0.2	3,-0.1	-0.525	24.9-177.7	-74.1	127.5	21.8	41.8	19.1
			<u> </u>	<u> </u>	<u> </u>				•	•				<u> </u>				

Secondary Structure Prediction



All 8 types or pool types into groups

DSSP

Q3

 $G = 3_{10}$ -helix

I = 5 helix (pi helix)

E = extended strand

B = beta-bridge


T = hydrogen bonded turn

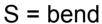
S = bend

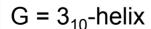
C = coil

econdary Structure Prediction

- All 8 types or pool types into groups

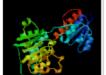
Q3

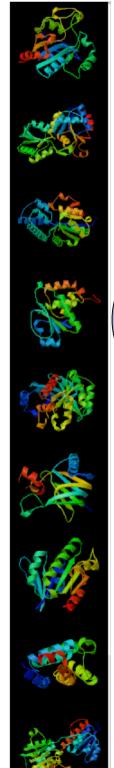

Н

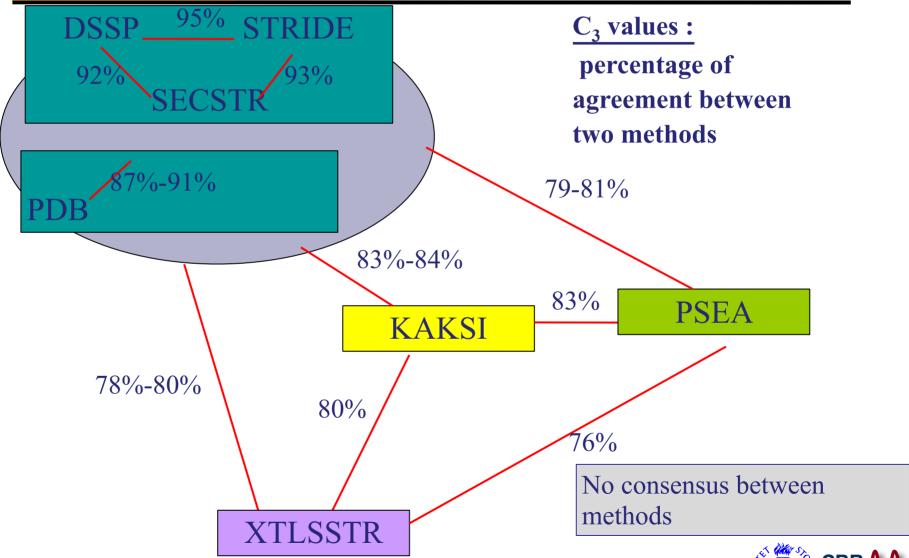

E = extended strand

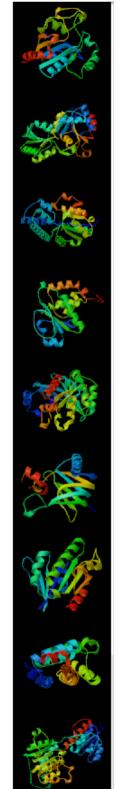
T = hydrogen bonded turn

C = coil




B = beta-bridge

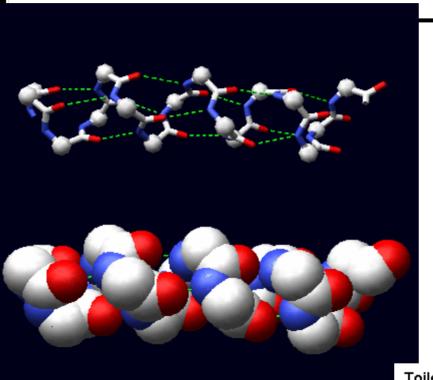


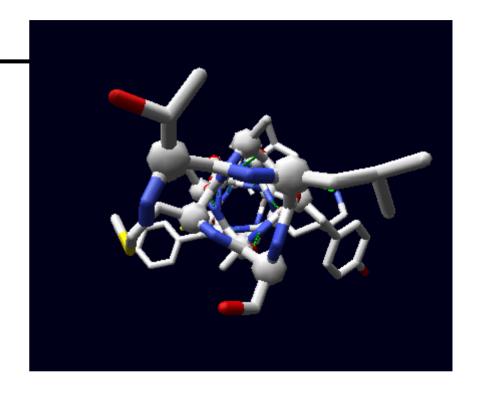


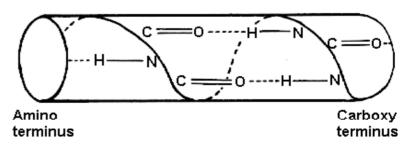
Secondary structures agreement between programs

Hydrogen bonds

J. Martin, G. Letellier, Arne Elofsson (arne@bioinfo.se)
J.F. Taly, A. Martin, A.G. de Brevern & J.F. Gibrat, (2005) *BMC Structural Biology*, **5**, 17.


Physics of secondary structures

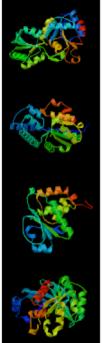

- Two main opposing forces
 - sidechain conformational entropy
 - mainchain hydrogen bonding.
- This predicts:
 - Helix propensity Ala>Leu>lle>Val
- Other factors
 - Polarity (low helical propensity of Ser, Thr, Asp and Asn)

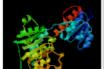


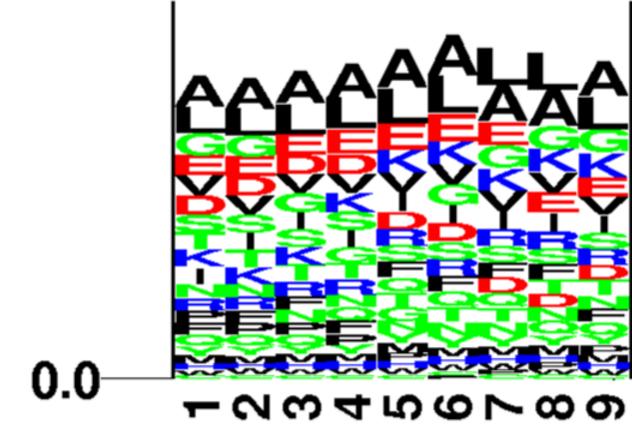
Secondary structures -Helix

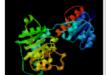


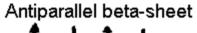
Toilet roll representation of the main chain hydrogen bonding in an alpha-helix.

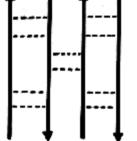


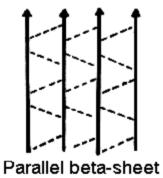

Amino acid preferences in α -Helix

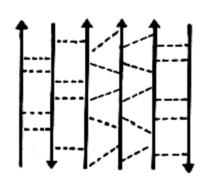


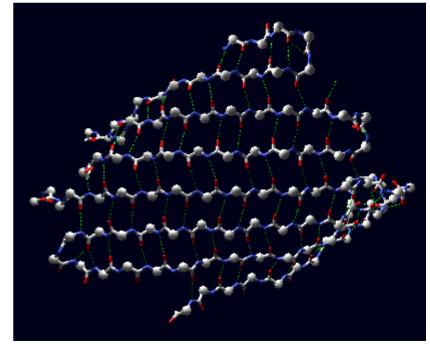








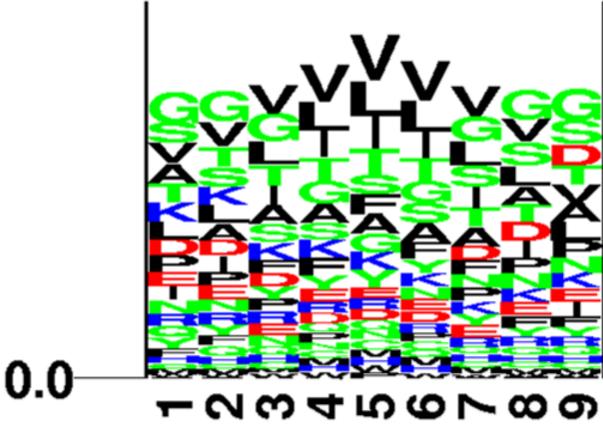

Secondary Structure - Sheet


The different types of beta-sheet. Dashed lines indicate main chain hydrogen bonds.

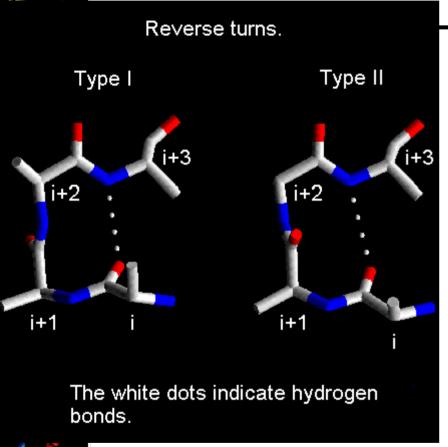
Mixed beta-sheet

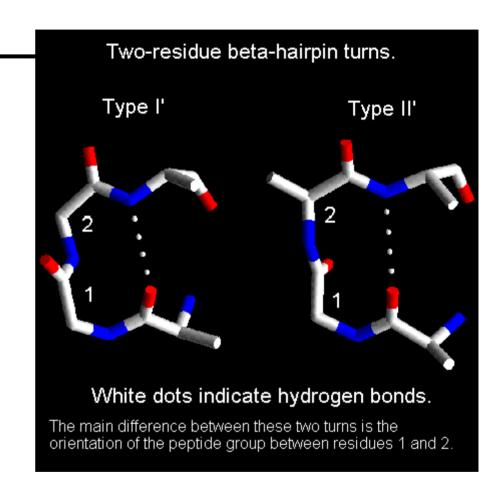
Amino acid preferences in β-Strand





bits

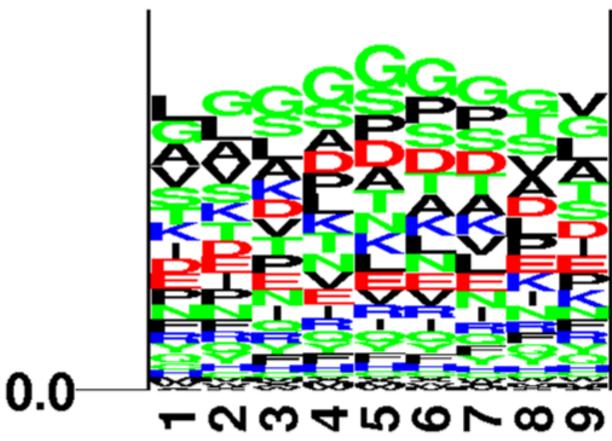




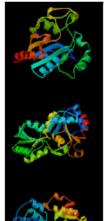
Secondary structure - turns

Amino acid preferences in coil





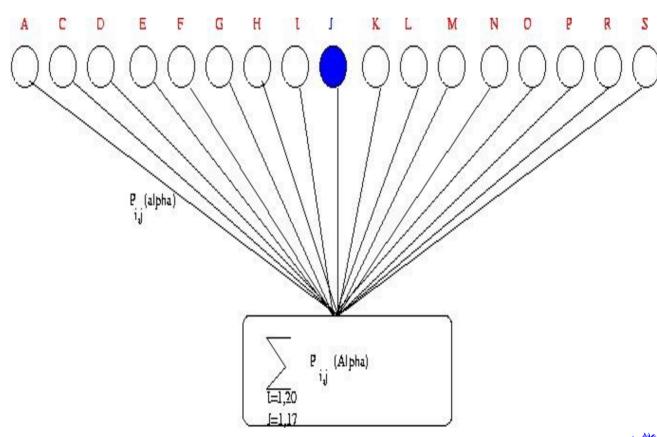
bits



Secondary Structure Predictions

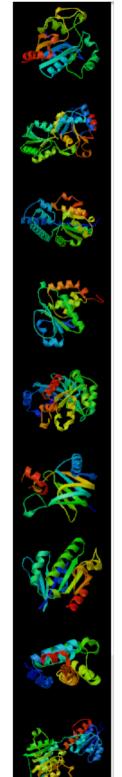
Some highlights in performance

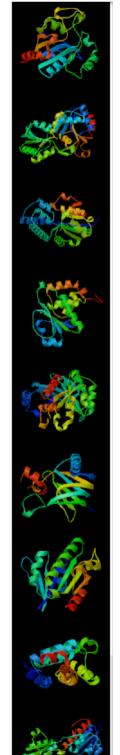
1974 Chou and Fasman	50%
--	-----


• 1978 GOR III	62%
----------------	-----


• 1993 PhD	72%
• 1993 PhD	129

2000 PsiPred 76%




Secondary structure prediction 1st generation methods

Chou and Fassman

Chou and Fassman

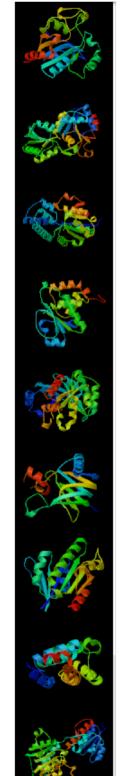
- Assign all residues the appropriate set of parameters.
- Scan through the peptide and identify helical regions
- Repeat this procedure to locate all of the helical regions in the sequence.
- Scan through the peptide and identify sheet regions.
- Solve conflicts between helical and sheet assignments
- Identify turns
- Claims of around 70-80% actual accuracy about 50-60%



Chou-Fasman

Name Ala	P(a) 142	P(b) 83	P(turn) 66	f(i) 0.06	f(i+1) 0.076	f(i+2) 0.035	f(i+3) 0.058
Arg	98	93	95	0.070	0.106	0.099	0.085
Asp	101	54	146	0.147	0.110	0.179	0.081
Asn	67	89	156	0.161	0.083	0.191	0.091
Cys	70	119	119	0.149	0.050	0.117	0.128
Glu	151	37	74	0.056	0.060	0.077	0.064
Gln	111	110	98	0.074	0.098	0.037	0.098
Gly	57	75	156	0.102	0.085	0.190	0.152
His	100	87	95	0.140	0.047	0.093	0.054
Ile	108	160	47	0.043	0.034	0.013	0.056
Leu	121	130	59	0.061	0.025	0.036	0.070
Lys	114	74	101	0.055	0.115	0.072	0.095
Met	145	105	60	0.068	0.082	0.014	0.055
Phe	113	138	60	0.059	0.041	0.065	0.065
Pro	57	55	152	0.102	0.301	0.034	0.068
Ser	77	75	143	0.120	0.139	0.125	0.106
Thr	83	119	96	0.086	0.108	0.065	0.079
Trp	108	137	96	0.077	0.013	0.064	0.167
Tyr	69	147	114	0.082	0.065	0.114	0.125
Val	106	170	50	0.062	0.048	0.028	0.053

Chou-Fasman



- General applicable
- Works for sequences with no solved homologs
- But the accuracy is low!

GOR III

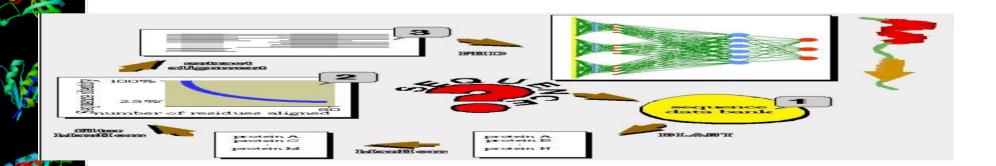
Garnier, Osguthorpe, Robson, 1990

- Secondary structure depends on aminoacids propensities
 - As in Chou Fassman
- Also influences by neighboring residues
 - Helix capping
 - Turns etc
- How to include distant information.
- Performance approximately 67%

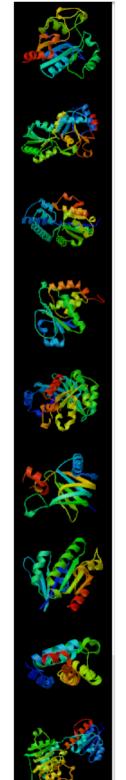
GOR III

Garnier, Osguthorpe, Robson, 1990

The helix propensity tables thus have 20x17 entries. Assign the state with the highest propensity



Burkshard Rost (Columbia Heir York)



Status of predictions in 1990

- Too short secondary structure segments
- About 65% accuracy
- Worse for Beta-strands
- Example:

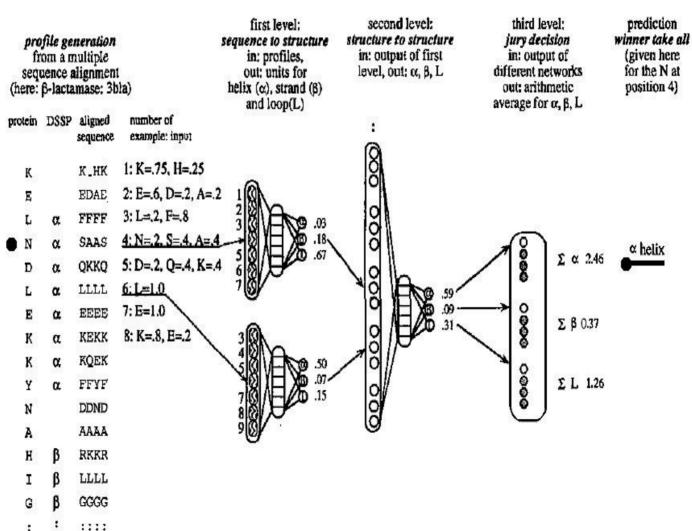
Secondary structure prediction 2nd generation methods

- sequence-to-structure relationship modelled using more complex statistics, e.g. artificial neural networks (NNs) or hidden Markov models (HMMs)
- evolutionary information included (profiles)
- prediction accuracy >70% (PhD, Rost 1993)

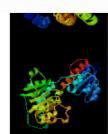
PhD (Rost & Sander, 1994)



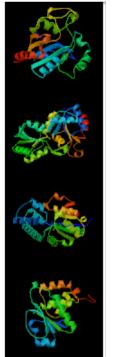
asse	.R						Œ	E.	E.	IR.	K	E			E	E.	6:	F	Æ	Е	Э	H	H
енэ	80	2	T	ы	K	B	- H	ш	T.	y Y	E.	v	H	 D	e e e e e	9	G			P.	.5	.A.	Y.
9 3.	81	К.	S	ЭН	Р	5	W.	W	92	ris				170	_		c	7.67	F			P=	
**** ***	E:	E	:H	.n	Œ	E	W	W	K	A	E 35	L	18	C:	0	R.	G	- P		P	.A.	5 H	Y Y
.a. 3	п	Œ	T			E	W	.M.	r- L	A	i.	:5 'U'	di B			e e	G G	70	Ű	p	<u>ح</u> ال		1.
.a. di	E	8	34	•	14	-	P	E:	G.	i,	- 5	-		16	2. 2.		1.1	100000	A.	Pi Pi	2000	Hr.	30
					-			c. c.			• • • • • • • • • • • • • • • • • • •	3	D	D		Q		E			P	A	a.
W	O	٥	ū	Ü	a	8	10	b	Ö	46	0	ć û	ø	6	Œ.	Ö	20	3 c	45	ð	să)	Ò	63
E.	O	0	0	101	C)	·Di		(3	20	D	o	20	ū	0	20	4	a	d	15	9	- 6	0	(0)
	Ø	- 5	0	G	-0	n	O	8	G.	ö	Ö	Ó	G	101	9	0	Ö	ol.	20	0	-0	Ó	QI.
Н	Q	Ø	Q:	G	0	O	a	Ð	OI.	0	ű	O	4)	0	O	0	ű.	rd.	n	ē	IC1	0	Ö
F	20	D	- 01	0	- a	-0	20	20		o l	g l	G	Ö	0	0	0	0	600	20	ā	- 0	ó	20
H	Ō	©	0	131	n	D	00	og.	a	0	0	ø	a	0	a	Q.	0	10.	G	G	69	b	63
Y	Ö	9	0	- 0	- 0	D	a	- a	18-	8	8	ò	Ö	(0)	Ġ.	Ğ	ø	30		9	0	G	9e
Ġ.	0	9	0	n	5/0	0	O	a	26	20	e	6	Ö	#O	Ô	Ö.	MO	-	Ö	Ö	101	0	. 0
P _i	Ö	G.	ø	Ó	ġ	-0	· O	Ó	Q.	4.0	D	O	(2)	6	0	0	@	a	6	(3)	4.10	40	C+
P	· Di	(3)	-D	ŭ	25	-0	0	100	Ğ-	G-	Θ.	(3)	0	0	0	0	0	o	O	2.00	20	-0	Ca
g	·D	50	25	-0	Ü	Ü	Ó	Ġ.	G-	G-	0	20	3.0	0		Di	0	0	6	0	4 10	3.0	Ca.
T		0	50	-0	0	Q	G	ø	126	D	0	0	2:0	O	0	0	(3)	C	0	g.	101	·D	Gs.
C.	0	0	O-	65	-0	ø	Ô	0	Q1	D	0	. 0	0	(0)		Di	a	D	10	a	- 0	Ð.	- C
11		0	25	-0	ū	Ü	0	D	Ò	Ö	Q	Q	ø	Ď	Ö	ø	Q.	Ø	ŋ	ġ	8 5 4	Ø	G.
A	20	Ø	g:	G	40	-D	-0	C	a	a	3:0	D	E.	6	60	26	8	E.	Ğ	6	100	ō.	C -
K	ø	20	- 0	. 0	3.5	Q	g	Q	4 2	Ø	20	•	D	20	(5)	Ø	. 0	4	G:	G.	g:	0	G*
딥	0	Ď.	•	Ó	4		-D	Q	Ó	Ó	Ġ	Gs	D	O	20	4.0	a	8.5	U	П	93	0	g-
Е	20	2:0	G.	6	Ü	25.	6	Ď	20	G	640	D	D	0	10	40	D	्द	O	6	0	D	ia.
H.	4.0	0	Û	100	G.	IǤ	Ö	Ð	-28	0	0		48 · D	0		0	0	Ð	D	. 0	-23	40	0
n:	0	Ď.	0	a	Ü	75	Ų.	ğ	Ģ.	ē.	Ģ	Ð	20	ΨÜ	Ō	ġ	(2)	I)	Ů	Ó	ŋ	9	ā
Hitme	Ď	Ö	Đ	ig	G	ıĞs	O	a	O	ø	3	13	3.	Ō	Q	Ō	Q	D	D	Q.	ŋ	8	. 0
M _{del}	- 5	ø	3	3	E	9	D	D	Di	O.	6	G	Ð	Ü	ŭ	ű	0	Ð	ů	ű	ű	8	ú
	1.00	1.8	J.T	C.B	3.6	L-1	L.5 :	1.5	ő.Jj	0.9	i , 0	Ø. V	9.T	ġ:, 9	0.9	9.7	1.5	£ . 0	13	1.5	0.9	0.7	1.5



PhD-Input



PhD-architecture


AUTHOR II. NOBLE, R. PAUPTIT, A. HUDACCHIO, H. DARASTE

нинини	нннннн	EEEEEE	ннннн	EEEREE	нннннн	59%
нининини	нннн	EEEEEE	EEEEHH	ннн	нннннн	65%
EEEEEE	REE	EEEEEEE	ннннн	EEEE	HHEEEE	72%

Burkhard Rost (Columbia New York)

PhD-predictions

Genome Reviews

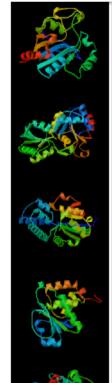
Genome Reviews: Release Stats

Release stats									
Release version	20								
Release date	07 February 2005								
Number of entries:	353								
Number of complete genomes	207								
Number of nucleotides	674,225,858								
Number of protein coding sequences	625,623								

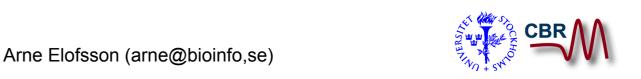
PhD summary

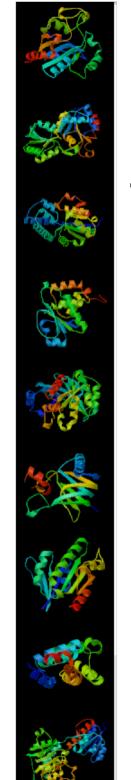
Correct length distributions

Much better beta strand predictions


 Good correlation between score and accuracy

 Better predictions for larger multiple sequence alignments





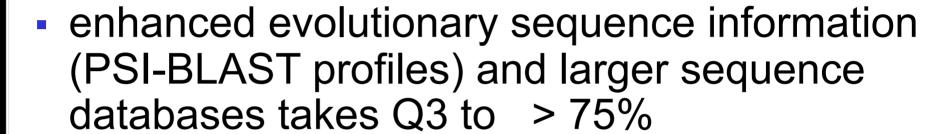
Best method!

- Secondary structure ``prediction" by homology
- If sequence of unknown secondary structure has a homologue of known structure, it is more accurate to make an alignment and copy the known secondary structure over to the unknown sequence, than to do `ab initio" secondary structure prediction.

Nearest neighbour methods

- Generate fragment of proteins with known structures
- Align sequence to all these
- Calculate the "average" secondary structure of aligned residues
- Filter
- Prediction accuracy > 70%
- Not sustained in CASP?

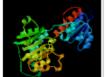
3rd generation methods



PHD and PSIPRED are the best known methods

PSIPRED

PSIBLAST to detect more remote homologs

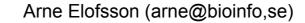

only two layers

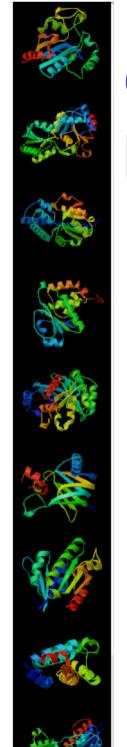
SVM or ANN gives similar performance

Current Status of Secondary Structure predictions

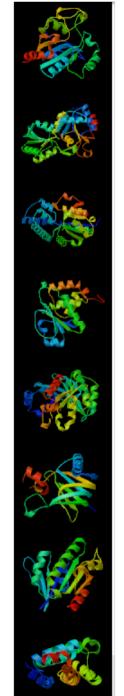
PsiPred

Sam-T02



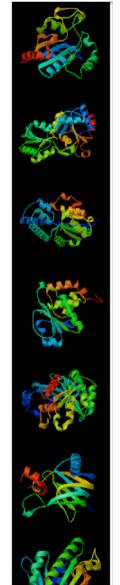

About 75%-76% accuracy

- Larger Databases
- PSI-BLAST



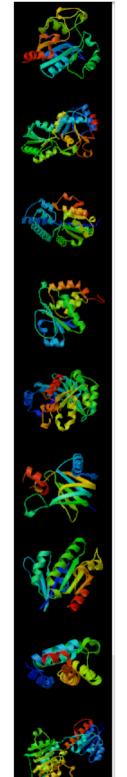
Other secondary structure prediction methods

- turn prediction
- transmembrane helix prediction
- coiled coil
- Dissorder predictions
- contact prediction, disulphides



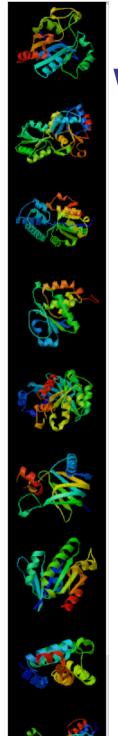
What use is it?

- No 3D means no clues to detailed function, so...
- Accurate secondary structure predictions help sequence analysis: finding homologues, aligning homologues, identifying domain boundaries.
- Can help true 3D prediction



Future improvements to SSP

- Long range information
 - Baker
- Folding pathway and/or 3D-information
- HMMSTR and I-Sites



Why protein modeling?

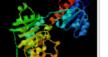
- Experimental effort to determine protein structure is very large and costly
- The gap between the size of the protein sequence data and protein structure data is large and increasing
- Close to 50% of all new sequences can be homology modeled

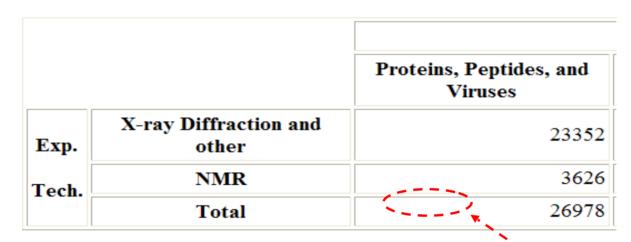
Why do we need structural models?

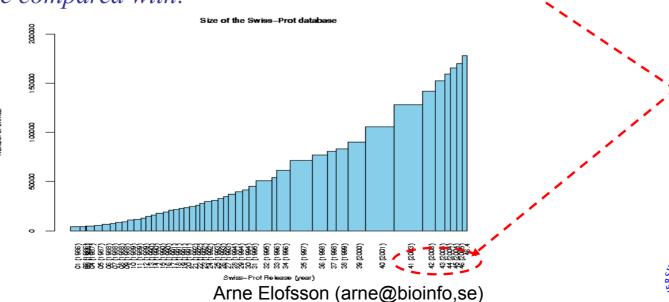
- only 20% of all proteins have a homologue in PDB
- for ~ 70% of the proteins a suitable structure from which to build a 3D model is available.
- predict functions of proteins that share low degrees of sequence similarity
- identify proteins that may have new folds

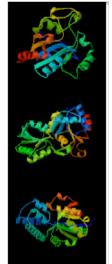
Scope of the Problem

- ~90% of new globular proteins share similar folds with known structures, implying the general applicability of comparative modeling methods for structure prediction
- general applicability of template-based modeling methods for structure prediction (currently 60-70% of new proteins, and this number is growing as more structures being solved)
- NIH Structural Genomics Initiative plans to experimentally solve ~10,000 "unique" structures and predict the rest using computational methods

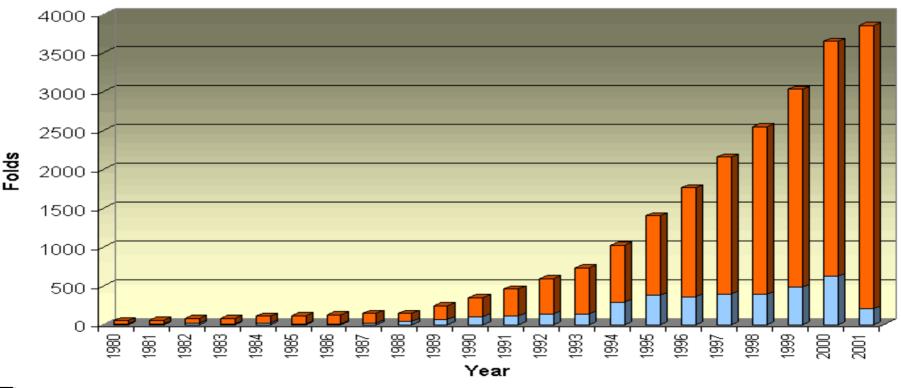


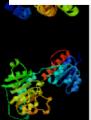


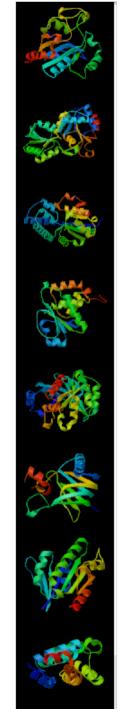



Why do we need homology modeling?

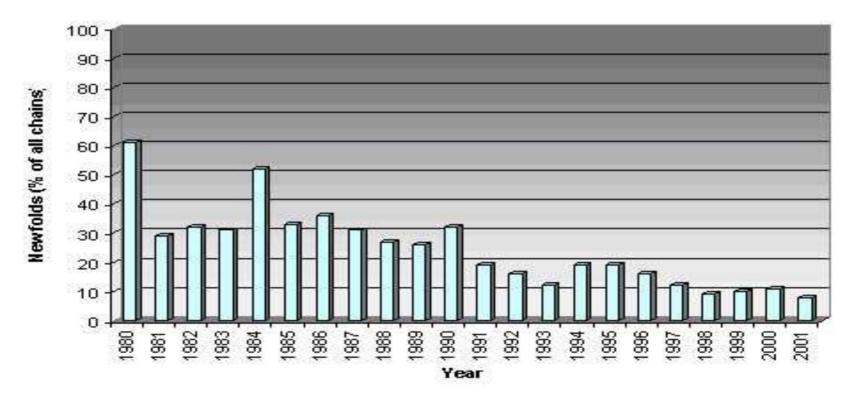
PDB Holdings List: 15-Feb-2005


To be compared with:




How many structures are there?

Protein Data Bank (PDB) Status: March 12, 2002

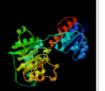


Source: http://www.rcsb.org/pdb/holdings.html

How many folds are there?

Structural Classification of Proteins (SCOP): Status (1 Mar 2002) based on 13220 PDB entries

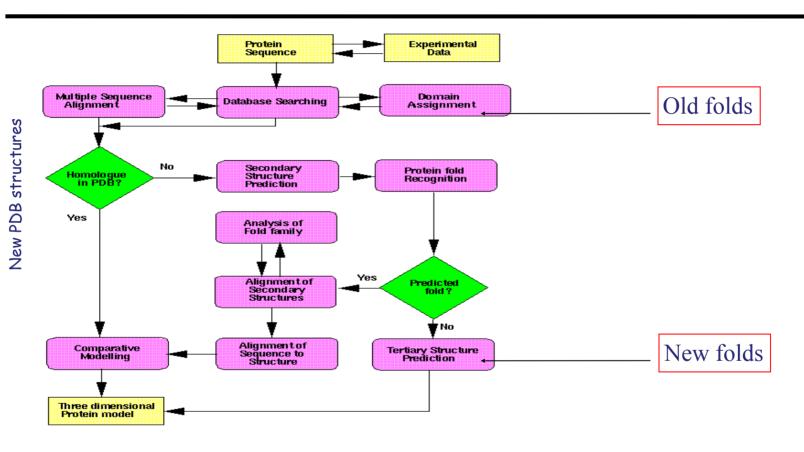
Swiss-Prot database

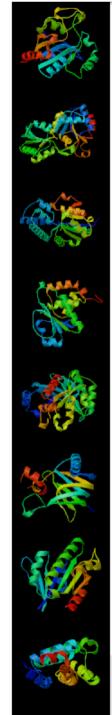


Probabilities of SWISS-MODEL accuracy for target-template identity classes.

Percent sequence identity ^a	Total number of models ^b	Percent ^c models with rmsd lower than 1 Å	Percent models with rmsd lower than 2 Å	Percent models with rmsd lower than 3 Å	•	Percent models with rmsd lower than 5 Å	Percent models with rmsd higher than 5 Å
25-29	125	0	10	30	46	67	33
30-39	222	0	18	45	66	77	23
40-49	156	9	44	63	78	91	9
50-59	155	18	55	79	86	91	9
60-69	145	38	72	85	91	92	8
70–79	137	42	71	82	85	88	12
80-89	173	45	79	86	94	95	5
90-95	88	59	78	83	86	91	9

- a: Range of sequence identity between target and template sequence.
- b: Total number of models in any given class of sequence identity. The table summarises 1201 model control structure pairs.
- c: Probability in percent that a model, sharing X% sequence identity with its template, deviates by 1 Å or less from the corresponding experimental control structure. The following columns provide these probabilities for other rms deviations.

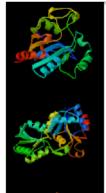




PDB New Fold Growth

Identification of new folds

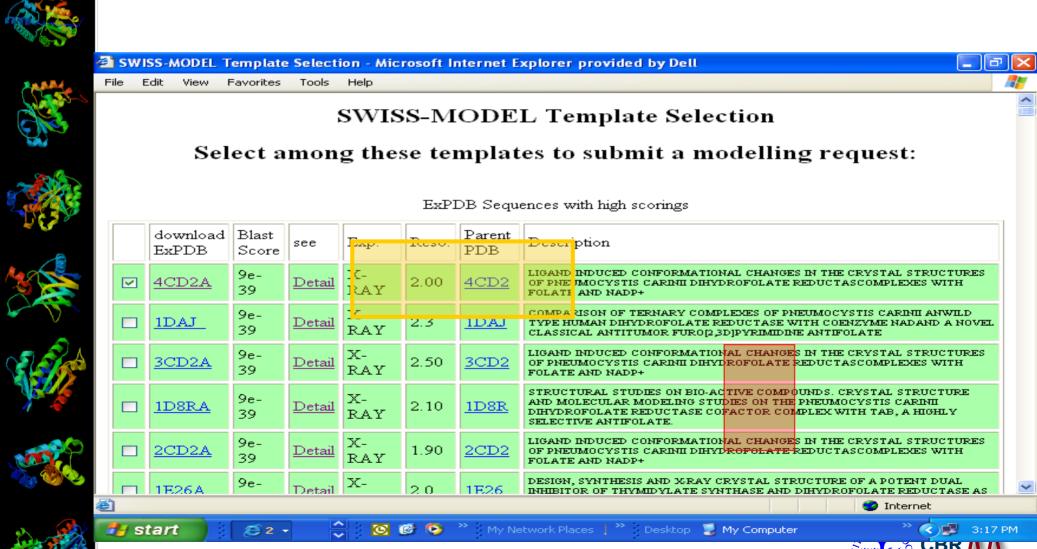
Source: http://www.rcsb.org/pdb/holdings.html

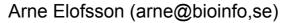

Homology Modeling

 Given a sequence what is the best way of mounting it onto a known structure

GHIKLSYTVNEQN LKPERFFYTSAVAIL

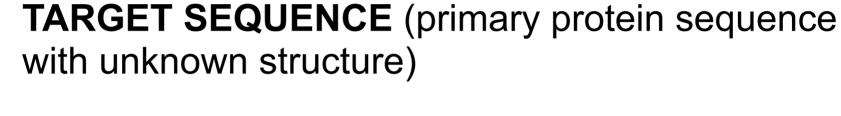
What is the basis for homology modelling?

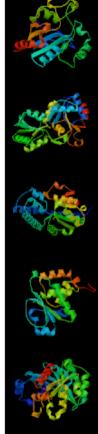

- Protein sequences with > 70% similarity allow construction of models with < 3 Å RMSD
- Reduction to:
- Loop structure modeling (connections $\alpha\alpha$, $\beta\beta$, $\alpha\beta$, $\beta\alpha$
- Side-chain modeling (energy refinement)



1200 models sharing 25-95% sequence identity with the submitted sequences (www.expasy.ch/swissmod)

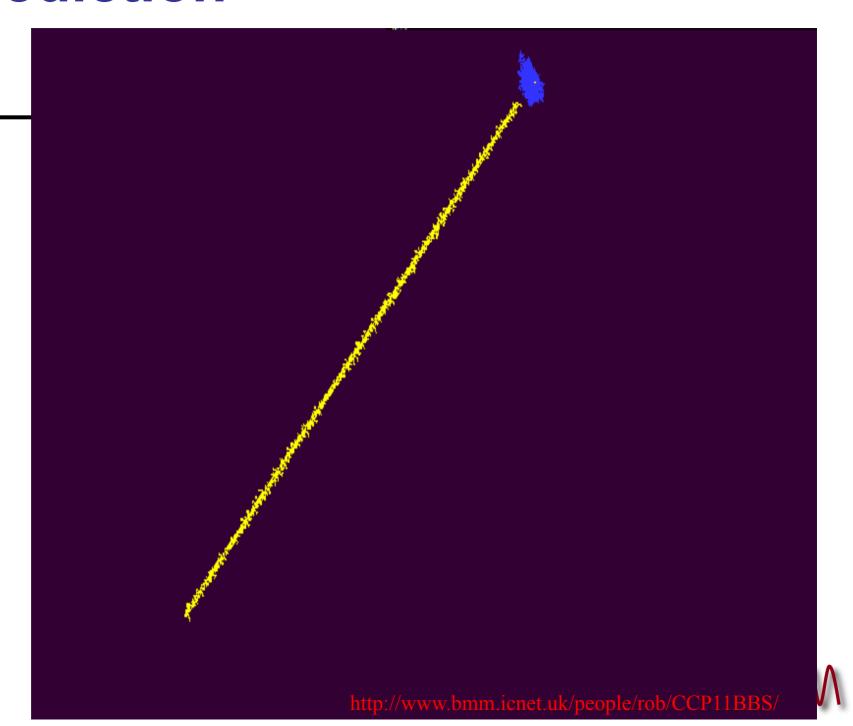
Input requirements for Homology Modelling

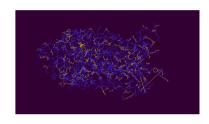


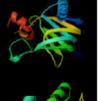

TEMPLATE (protein whose 3D structure has already been determined)

SEQUENCE ALIGNMENT (using Clustal W) between template and target sequence

Prediction

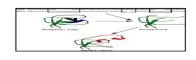


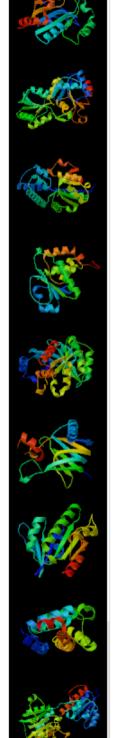

Find the appropriate template



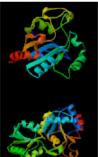
SWISS-MODEL Blast

Find the Appropriate Modelling Template(s)


lease enter your sequence in FASTA format.



Choose a template



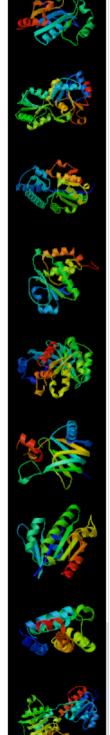
Template search results

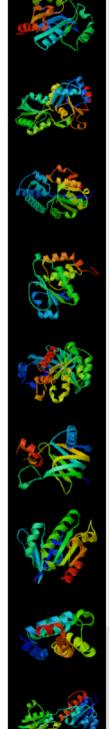
```
4CD2A top
LIGAND INDUCED CONFORMATIONAL CHANGES IN THE CRYSTAL
MOL ID: 1;
CHAIN: A;
SYNONYM: PCDHFR;
EC: 1.5.1.3;
ENGINEERED: YES
MOL ID: 1;
Length = 202
Query: 232
             LT IVA
MG
MNVVLMG 54
```

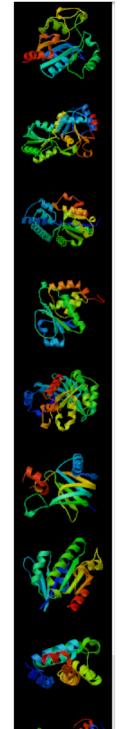
```
STRUCTURES OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTAS
COMPLEXES WITH FOLATE AND NADP+
MOLECULE: DIHYDROFOLATE REDUCTASE;
ORGANISM SCIENTIFIC: PNEUMOCYSTIS CARINII;
ORGANISM COMMON: BACTERIA;
V.CODY, N.GALITSKY, D.RAK, J.R.LUFT, W.PANGBORN, S.F.QUEENER
 Score = 157 \text{ bits } (393), Expect = 9e-39
 Identities = 82/220 (37 Positives = 138/220 (62 Gaps = 22/220 (10
RDLTMIVAVSSPNLGIGKKNSMPWHIKQEMAYFANVTSSTESSGQLEEGKSKIMNVVIMG 291
                         GIG NS PW K E YF VTS
                                                                 MNVV
Sbjct: 1 KSLTLIVALTT-SYGIGRSNSLPWKLKKEISYFKRVTSFVPTFDSFES----
```


Mounting the sequence onto the structure

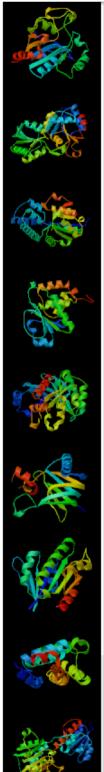
ounted sequence




Modeled structure



Corrected Model



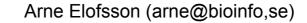
Evaluating your model

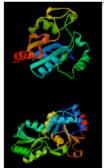
- inaccurate if atomic coordinates are not within 0.5 A RMSD of template control
- Quality checks
 - Bond length
 - Bond Angles
 - Ramachandran
- Biology
 - Does it make sense

Homology Modeling: Practical guide

Approach 1: Manual

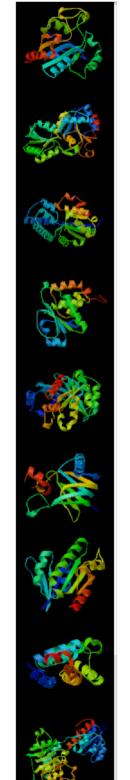
- Submit target sequence to BLAST; identify potential templates
- For each template:
 - Generate alignment between target and template (Smith-Waterman + manual correction)
 - Build framework
 - build loop + sidechain
 - assess model (stereochemistry, ...)



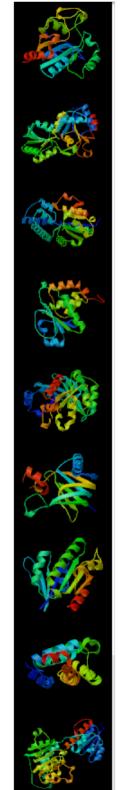

Homology Modeling: Practical guide

- Fully automatic:
 - 3D-Jigsaw: http://www.bmm.icnet.uk/servers/3djigsaw/
 - EsyPred3D: http://www.fundp.ac.be/urbm/bioinfo/esypred/
 - SwissModel: http://swissmodel.expasy.org//SWISS-MODEL.html
 - Pcons: http://www.cbr.su.se/pcons/
- Fold recognition:
 - 3D-PSSM: http://www.sbg.bio.ic.ac.uk/~3dpssm/
- Useful sites:
 - Meta server: http://bioinfo.pl/Meta
 - New Meta server: http://Pcons.net
 - PredictProtein: http://cubic.bioc.columbia.edu/predictprotein/

Homology Modeling: How it works



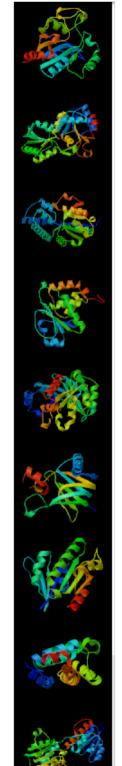
- o Find template
- O Align target sequence with template
- O Generate model:
 - add loops
 - add sidechains
- o Refine model


CASP

(Critical Assessment of Structure Predictions)

- the biannual "competition" in protein structure prediction.
- CASP8 next summer

http://predictioncenter.org/



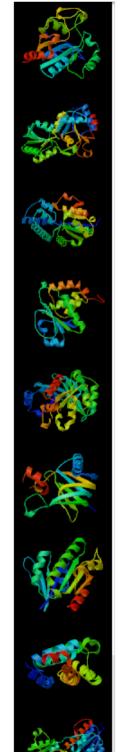
CASP Experiment

- Experimentalists are solicited to provide information about structures expected to be soon solved
- Predictors retrieve the sequence from prediction center (predictioncenter.llnl.gov)
- Deposit predictions throughout the season
- Meeting held to assess results

Prediction Categories

- Comparative Modeling modeling by homology
- Fold Recognition
 - Advanced Sequence Comparison Methods
 - Threading
- New Fold Methods/ "ab initio"
- Categories are separated by distance from any known structure

Conclusions



- When a suitable template structure exists in PDB, using homology modeling on target sequence is best for predicting the structure
- Fold Recognition servers can help find a template when conventional sequence analysis methods fail
- Combining elements from several sources may allow you to construct reasonably accurate models

Summary

- Secondary structure predictions
 - Best methods use machine learning approaches and evolutionary information
 - Close to 80% accuracy
- Homology modeling
 - Needed for the assignments of structure to sequence
 - Good models if %ID is > 50% with automatic methods
- More in the "molecular modelling course"

