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8SS: A new approach to 8-state secondary structure prediction 

Abstract 

8-state secondary structure prediction is a challenging problem that has until recently remained 

relatively unexplored. Most early secondary structure prediction methods focused on the much less 

complex helix, strand, or coil 3-state prediction. Here, we present a new 8-state secondary structure 

predictor, 8SS, with 3 versions, each using one of either support vector machines, simple decision trees, 

or random forests. By incorporating evolutionary sequence information using PSI-BLAST and information 

about adjacent amino acid residues using various window sizes, our method successfully predicts most 

secondary structure elements. After optimization of several input and model parameters, our best 

predictor has a Q8 accuracy of ~69% when tested on a set of 718 proteins, which is comparable to other 

currently available state-of-the-art predictors such as RaptorX-SS8 and SSpro8. 

Introduction 

Secondary structure prediction is a challenging problem wherein the goal is to forecast the local 

secondary structure conformation of a protein segment based on its primary sequence of amino acids. As 

it is known that the primary sequence of a protein contains all the necessary information for the protein 

to fold into its secondary and tertiary structure, it should therefore be possible to assign secondary 

structures to segments if the protein sequence is known (1). There are two main types of prediction 

strategies: those that classify into helices, sheets, and coils, known as HEC or Q3, or those that classify 

into 8 different states including 3 types of helices, extended strands, beta bridges, turns, bends, and coils, 

known as Q8. Naturally, due to the 5 additional possible states, Q8 prediction is significantly more 

complicated than Q3 prediction, usually limited by poor prediction of less common features that are not 

alpha-helices, extended beta strands, or coils.  

Since the mid 1970’s, prediction of secondary structure has been a hot research topic. First generation 

prediction methods, like the one published in 1974 by Chou and Fasman, relied on the propensities of 

amino acids to form certain secondary structures to guide predictions. Unfortunately, due to lack of 

further information, this method was only about 50-60% accurate in Q3 (2). The next major improvement 

to this prediction came through the GOR3 method, which incorporated information on neighbouring 

amino acids in the form of a sliding window to improve Q3 accuracy above 60% (3). An important 

contribution to this field was published in 1983 in the form of the dictionary of protein secondary 

structure, or DSSP, that served to standardize definitions for classification of secondary structure into 

either 8 or 3 classes (4). Many years later, in 1993, prediction finally broke the 70% Q3 accuracy barrier 

with the PhD method (5). The increase in accuracy was due to incorporation of multiple sequence 

alignments using a position specific scoring matrix (PSSM) as well as a multi layer neural network to make 

decisions. Probabilistic calculations are first performed to convert sequence to structure, then structure 

to structure based on nearby probabilities, and finally to make a winner takes all decision (5). Current 

popular methods such as PSI-PRED (1999) are based on the PhD method but incorporate PSI-BLAST for 

multiple sequence alignment along with larger reference databases for improved accuracy (6).  

Though the accuracy of the latest predictors hovers around 70% for 8 state prediction (Q8) and 80% 

for 3 state prediction (Q3), researchers are still keen to solve the remaining 20-30% (6). For example, one 

article released in 2016 by Wang et al. uses deep convolutional neural fields for secondary structure 

prediction, with claimed accuracies of 84% and 72% for Q3 and Q8 respectively (7). Continued advances 
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in both database coverage and machine learning will likely allow predictors to reach even higher 

accuracies in the near future.  

Herein, we present a new 8-state secondary structure predictor built using python-based machine 

learning alongside a cross-validated dataset of 718 proteins with known secondary structure. After 

optimization including testing of different window sizes and incorporation of evolutionary information 

using PSI-BLAST, this method yields an accuracy of around 70% for Q8 prediction when testing on a subset 

of our 718 proteins, which is competitive in comparison to the best currently available 8-state predictors.  

Method 

The dataset used to build, train, and test this prediction method is a set of 718 protein chains with 

known sequence and secondary structure that have been aggregated from the PDB. Each sequence has 

an average length of 222, and the total number of amino acids in the dataset is 159507. The complete 

dataset is available for review at https://github.com/manuelester/bioinformatics-project-

course/blob/master/Final%20Scripts/8SS%20Predictor/dssp_8_state.3line.txt .  

From the original dataset, 3 element blocks were created for each protein, containing the protein ID, 

sequence, and corresponding secondary structure. For each sequence, additional evolutionary 

information was obtained using a multiple sequence alignment through PSI-BLAST with the UniRef90 

database, E-value of 0.01, and 3 iterations (8). The PSI-BLAST conditions were chosen based on those used 

by default in PSI-PRED, which is a well established reliable secondary structure prediction method (6). The 

resultant PSSM was then reimported and appended to each 3 element block, extending it to 5 elements 

using the substitution matrix (SM) and frequency matrix (FM) PSSM. Normalization of SM values was done 

using the sigmoid function as in PSI-PRED (6). FM values were normalized to between 0-1 by dividing each 

value by 100, the maximum possible frequency of an amino acid in any given position.   

To avoid bias in the training and test sets due to related sequences being grouped together in the 

original dataset, the protein sequences were randomized prior to cross-validation splitting. A cross-

validation fold-value of 5 was chosen to match the popular 80-20 training-test split for cross-validation 

datasets (9). Furthermore, cross-validation sets were divided into equal parts on the protein level and not 

the amino acid level, so as to minimize similarity bias between training and test sets that can occur when 

placing related adjacent residues into separate sets.  

Each set was then processed to convert sequences and features into a suitable format to use as input 

to the built-in machine learning algorithms found in the sklearn module of Python. Features were 

converted into numbers, ranging from 1-8. Sequence PSSMs were converted into a 20*W long list for each 

corresponding feature, where W is the chosen odd number window size surrounding the central residue 

N, and 20 is the length of a SM or FM entry for one residue from the PSSM. 

Finally, the converted and divided dataset was used to build an SVM-based classifier for 8-state 

secondary structure prediction. Each of the 5 training sets was used subsequently to train an SVM model, 

which clusters features and builds decision surfaces to separate each feature from the others. These SVMs 

were then challenged to predict features from given protein sequences in the corresponding test sets. To 

evaluate the predictor performance, both feature-specific and average values were calculated for 

precision, recall, and F1 score, along with a confusion matrix containing true versus predicted labels.  

https://github.com/manuelester/bioinformatics-project-course/blob/master/Final%20Scripts/8SS%20Predictor/dssp_8_state.3line.txt
https://github.com/manuelester/bioinformatics-project-course/blob/master/Final%20Scripts/8SS%20Predictor/dssp_8_state.3line.txt
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Optimization of the predictor was done by iterating through model building using various parameters 

as well as other machine learning algorithms. The parameters tested were: window sizes from 7-17, 

balanced and unbalanced class weights, C-values between 1-100, model building using normalized SM 

and FM scores, as well as decision tree and random forests algorithms.  

Results 

To examine the reliability of SVM model performance and check for overfitting due to similarity 

between correspondent training and test datasets, a 5-fold cross validation was carried out with 80/20 

train/test splits. As shown in Figure 1, the performance across all 5 train/test splits is consistent, with an 

average accuracy of 0.536 and standard deviation of 0.001. Therefore, we can be confident that the SVM 

does not suffer from overfitting and has reproducible performance regardless of which data from the 

complete dataset is assigned to the training and test sets.  

 
Figure 1: 5-fold cross-validation of SVM model. 

After confirming the prediction reliability of the SVM model built using the 718 protein dataset, 

various parameters were modified systematically, and their influence on model performance evaluated. 

In accordance with the methodology used in building predictors such as DeepCNF-SS, we tested sliding 

window sizes around 11, from 7-17 residues, in combination with SM or FM data, and balanced or 

unbalanced class weights in the SVM algorithm (7). It appears, in Figure 2A, that F1 scores level off at 

around window size 13 for all methods except for SM balanced, which does not plateau within the tested 

range. Accuracy scores for all methods continue to increase with increasing window size, albeit less 

drastically between 13-17. It must be noted, however, that the time it takes to build SVM models increases 

exponentially with increasing window sizes, a factor that may be relevant when choosing the final 

parameters of the model. Interestingly, the maximal F1 scores were achieved using SM balanced models, 

which also resulted in the lowest accuracy scores. The reverse can be seen for the FM unbalanced models.  

Using Python’s built-in svm.SVC and svm.LinearSVC machine learning tools, we evaluated 

performance using C-values from 1-100, and 4 different SVM kernels: linear, rbf, sigmoid, and polynomial. 

C values determine the distance each decision surface should have from the closest point in each feature 
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cluster, with larger C values resulting in smaller distances (10). Kernels on the other hand refer to the 

shape of the decision surface line (10). However, somewhat unremarkably, performance was best using 

the default C-value of 1 and the linear SVC kernel in svm.LinearSVC (data not shown).   

 

 
Figure 2: Comparison of SVM performance at varying window sizes, using SM or FM PSSM input, and balanced or default class 

weights for each feature. F1 scores in (A) and average accuracy in (B).  
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Figure 3 summarizes the performance of SVM, Decision Tree, and Random Forests based prediction 

models. Both the F1 and Accuracy scores increased by between 0.05-0.10 using the decision tree 

algorithm, and by between 0.10-0.20 using the random forests algorithm, relative to the SVM algorithm. 

Additionally, the time it took to build models with the RF and DT algorithms was significantly shorter than 

with the SVM algorithm. Taken together, these results indicate that DT and RF are both more accurate, as 

well as faster, than SVM for 8-state secondary structure prediction.  

   

Figure 3: Comparison of SVM, decision tree, and random forest machine learning algorithms using SM data and balanced class 

weights. F1 score in (A) and average accuracy in (B).  

To better understand why DT and RF algorithms improve so drastically upon the model performance 

when compared to the SVM-based model, we compared recall, precision, and F1 scores for all 8 states 

across models from each of the 3 algorithms in Figure 4. Confusion matrices for the performance of each 

machine learning algorithm can be found in supplementary Figure S1. From glancing at Figure 4A, the 

SVM-based predictor performs almost as well as the DT-based predictor for the most common classes: H, 

E, and C. However, a definite difference between algorithms can be seen for the remaining 5 less common 

classes, which is most noticeable in G, I, B, and S. Figure 4B confirms this, showing that precision, recall, 

and F1 scores using the SVM method are comparable to the DT method for H and E, and to a lesser extent 

C. Similarly, the improvements in precision, recall, and F1 scores in the less common classes when using 

either of the two non-SVM-based models are shown in Figure 4C. A noteworthy finding here is that, on 

average, RF-based models achieve much improved precision scores in predicting the 5 less common 

classes relative to DT-based models, while their recall scores are comparable. Possible explanations for 

the observed performance differences can be found in the discussion below.  
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Figure 4: Feature-wise precision, recall, and F1 performance for SVM, DT, and RF algorithms. Window size is 11, SM data was 

used as input, and balanced class weights. (A) All 8 features and averages. (B) Performance on the 3 most common features: H, 

E, C. (C) Performance on less common features: G, I, B, T, S.  

After optimizing our predictor as described above, the performance using each of the 3 machine 

learning algorithms was compared to 4 currently used state-of-the-art predictors: SSpro, SSpro with 

template, RaptorX-SS8, and DeepCNF-SS. The metrics for these predictors was taken from a recent paper 

by Wang et al. (7). The average of each predictor’s performance on 5 different reference datasets is 

plotted, in Figure 5, alongside performances of the 3 predictors we built evaluated using our 718 protein 

dataset. Q8 accuracy for SSpro, SSpro with template, RaptorX-SS8, and DeepCNF-SS is 64.82, 76.66, 66.14, 

and 71.94 percent respectively. Our predictors: 8SS SVM, 8SS DT, and 8SS RF have accuracies of 55.23, 

61.79, and 68.74 percent respectively. From these data, it appears that while our SVM and DT-based 

predictors perform slightly worse than currently used predictors, the 8SS RF predictor actually performs 

quite well, falling directly in the middle of the 4 listed predictors. 
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Figure 5: Comparison of Q8 accuracy between current state-of-the-art predictors and 8SS using SVM, DT, or RF algorithms.  

Discussion/Future Directions 

During the optimization process for our 8-state secondary structure predictor, 8SS, various 

parameters were varied to try to improve performance, albeit with varying degrees of success. As was 

done with other commonly used predictors such as PSI-PRED, we decided to test window sizes between 

7-17 amino acid residues to capture the full length of longer alpha-helices, which have an average length 

of around 10 residues (7). We found there to be a clear trade-off here between performance and time to 

build the SVM model, with larger window sizes tending to provide better performance but also requiring 

significantly longer to process. This time increase can be explained by the fact that each additional residue 

added to the window size adds 20 additional X-value data-points to each window-feature pair. This means 

that for a dataset of only 200 proteins with an average length of 500 residues, 200*500*20 or 200,000 

more data points must be considered.  

To address the problem of underrepresented classes in the data such as G or I, a balanced class weight 

parameter was added to the machine learning algorithm (10). However, though this change did result in 

improvements to classification of these classes, it also decreased prediction accuracy for the more 

common classes such as helices, and thus only provided minimal improvements in overall accuracy.  

Finally, after initially using normalized frequency matrix data from PSI-BLAST PSSMs to build the SVM-

based predictor, we were curious to see if and how performance would be affected with normalized 

substitution matrix data, as is used by other secondary structure predictors (6). Interestingly, results were 

mixed as F1 scores increased but accuracy scores decreased on average. It is difficult to explain this 

seemingly paradoxical result. However, since substitution matrices more accurately reflect the impact of 

certain amino acid substitutions on the ability to form given secondary structures in a region, one may 

have expected SM data to improve both accuracy and F1 scores for the predictor. In this case, it appears 

that the use of SM instead of FM data improves prediction for less common classes while worsening 

prediction of the most common classes. This would lead to an increased average F1 score across all 8 

classes but a decreased average accuracy, as it is calculated per the overall instance of right and wrong 
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predictions on the complete test set, most of which will be predictions for the common classes H, E, and 

C.  

From the performance metrics displayed in Figures 3 and 4, either decision tree or random forests 

machine learning algorithms seem to be more suitable for 8-state secondary structure prediction than 

support vector machines. Figure 3 indicates that overall F1 score and accuracy is increased by 0.05-0.10 

when using decision trees, and another 0.05-0.10 when using random forests. After breaking this 

improvement down into single-class prediction results, we learned from Figure 4 that these two 

algorithms fare significantly better than SVM in providing accurate predictions of less common secondary 

structure elements.  

SVM algorithms work by clustering training samples in a multi-dimensional space, building decision 

surfaces to separate each cluster, and then classifying new samples according to which side of these 

decision surfaces they fall on (11). Therefore, it makes sense that SVMs may struggle to separate similar 

secondary structure types such as the 3 different types of helices, as they are likely to cluster quite closely 

together in the same region of the multi-dimensional space. On the other hand, both decision tree and 

random forest algorithms are based on building classification trees, like phylogenetic trees in biology (12). 

They classify data along a complex branched structure, with leaves corresponding to classes and branches 

represent decisions based on the values of certain elements within the input data (12). The main 

difference is that random forests take the average of multiple decision trees, each of which is built based 

on a randomly selected subset of information from the training set (13). In this way, random forests are 

said to reduce overfitting and the resultant high variance that is common to simple decision trees (14). 

Due to their differences in approach for multi-class classification, we suggest that one reason for the 

improved classification performance when using tree-based machine learning algorithms is that this 

architecture allows for a sort of step-wise separation of the 8-states which is not possible using a single 

SVM. This means that on the classification tree, each amino acid on the test sequence can be classified as 

helical or non-helical at an early branch junction, and subsequently all amino acids said to be helical can 

be branched into one of the 3 helical secondary structures. Furthermore, random forests seem to suffer 

less from overfitting than decision trees. Across the 5 cross-validation sets evaluated for each model, 

accuracy score variance was higher in decision tree based models relative to random forest based models 

(standard deviation of 0.028 compared to 0.015 for window size 9, FM, unbalanced). Taken together, this 

explains why the different machine learning algorithms rank in the following order, from best to worst: 

random forests, decision tree, support vector machines.  

The performance of our best predictor, using random forests, is quite competitive compared to the 

other 8-state secondary structure predictors in Figure 5. It is, however, difficult to account for the 

differences and similarities in performance between our method and the others, as we use random forests 

and others use a variety of neural networks based approaches to solve the prediction problem (7, 15, 16). 

An aspect worth comparing in the future is the speed of prediction between random forests and neural 

networks approaches, especially for longer protein sequences, but no information on prediction speed is 

currently available for the listed methods. Although the machine learning algorithms are different, 

methods such as SSpro8 also use 3 iterations of PSI-BLAST on each sequence to obtain evolutionary 

information about each position prior to prediction (16). As such, using PSI-BLAST appears to be an 

effective way to improve performance and is an important part of how we have achieved an accuracy of 
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around 70%. After testing various window sizes, the optimum in terms of accuracy and speed was found 

to be at a size of 11 residues, which matches the window size used in the DeepCNF method (7).  

Interestingly, all of the 4 neural network based methods that are listed in Figure 5 also use additional 

input information alongside the PSI-BLAST PSSM data. SSpro8 with template uses sequence-based 

structural similarity, by searching the PDB for any known structures with similar sequences, to help with 

secondary structure prediction, which may account for it having the highest Q8 accuracy (16). In contrast, 

RaptorX-SS8 incorporates both physio-chemical amino acid properties and propensity for residues to 

appear as the end residue of a secondary structure feature to aid prediction (15). Lastly, Deep-CNF input 

contains both a PSSM input vector, as well as a sparse encoded vector corresponding to the actual amino 

acid at that position (7). In the future, inclusion of such additional input data alongside our current 

procedure should be considered to improve 8-state prediction accuracy.  

Though the performance of our predictor on the given dataset is comparable among the best currently 

available 8-state secondary structure predictors, further steps must be taken before this performance is 

validated and the predictor is ready for public use.  

From looking at the complete dataset of 718 proteins used to build and test our predictor, one may 

question whether the dataset is both big enough and representative of the global protein landscape. This 

is an important concern to address, as a dataset that is too small and/or biased will not only result in a 

poor predictor for new protein sequences, but also prohibit an accurate evaluation of predictor 

performance. To answer this question, we must examine the prediction accuracy of our predictor using 

several commonly used reference datasets that were used to evaluate the performance of other state-of-

the-art predictors, such as CullPDB and CASP10-11 (7). To get the best possible predictor, training should 

be redone using a proven representative dataset, for example one that contains one protein with known 

secondary structure from each family of databases such as SCOP or CATH. Another option would be to 

use datasets previously curated for training of secondary structure prediction, such as the 5000+ protein 

set used for SSpro8 (16). This will allow the classification model to best predict the structure of any new 

protein sequence. Taking these additional steps will allow for improvement in prediction, as well as a 

more accurate comparison of performance between our predictor and others.  

Furthermore, it may be possible to integrate further sequence information or use step wise 

classification models to achieve better 8-state secondary structure prediction. Amino acids have different 

properties with regards to hydrophobicity, size, charge, and polarity. It has been shown that based on 

these properties, amino acids are more or less likely to appear in different secondary structure features 

(17). Therefore, including information about these properties alongside the respective PSSM data for each 

position may serve to further improve prediction performance. There have also been examples where 

predictors include the PSSM data along with a second sparse matrix representing the actual amino acid in 

that position for each input position (7). 

Another possibility would be to include a step wise classification scheme, with layered machines, for 

difficult to distinguish related secondary structures such as the 3 helix types. Step-wise machine learning 

has been shown to be effective for similar structure prediction methods, such as in SPINE X (18). Such a 

predictor would first classify into 3 states: H, E, and C, and then proceed to classify the helices into H, G, 

and I. This scheme may help to better resolve classification conflicts that arise when trying to differentiate 

between helix types because the differences between helix types would likely become more defined when 

only residues from helices are considered.  
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Following further optimization of the method parameters and validation using representative 

datasets, the predictor presented here may prove to become a promising new approach to the challenging 

problem of 8-state secondary structure prediction.  
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Figure S1: Confusion matrices for predictions from the 3 different machine learning algorithms used. 

Window size 11, SM data as input, balanced class weights. Features are as follows: 1:H, 2:G, 3:I, 4:E, 5:B, 

6:T, 7:S, 8:C. (A) is the SVM-based predictor. (B) is the DT-based predictor. (C) is the RF-based predictor. 

   A. SVM        B. DT 

  C. RF 


